
IMPLEMENTATION OF ROBOTIC

FORCE CONTROL WITH

POSITION ACCOMMODATION

by

Michael J. Ryan

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering Department

Troy, New York 12180-3590

June 1992

CIRSSE REPORT #118

@ Copyright 1992

by

Michael J. Ryan

All Rights Reserved

ii

CONTENTS

LIST OF TABLES v

LIST OF FIGURES vi

ACKNOWLEDGMENT viii

ABSTRACT ix

1. INTRODUCTION 1

1.1 Goalsof the Project 2

1.2 Brief Historical Review 3

1.3 Report Organization 3

2. THEORY AND ANALYSIS 5

2.1 Position-Based Force Control 5

2,1.1 Analysis of Force Mechanisms 5

2.2 Position Accommodation 7

2.2.1 The Phi-Matrix 11

2.3 Conclusion 14

3, TESTBED DESCRIPTION 15

3.1 HARDWARE 15

3.1.1 6 DOF PUMA Robots 17

3.1.2 _ DOF Transporter Platforms 19

3.1.3 Computer-Control System 20

3.1.4 Force Sensors 21

3.1.5 Pneumatic Grippers 22

3.2 SOFTWARE 22

:3.2.1 CIRSSE Testbed Operating System (CTOS) 23

:3.2.2 Motion Control System (MCS) 24

:3.3 Conclusion 26

iii

4. FORCE CONTROL IMPLEMENTATION 27

4.1 Trajectory Generation 27

4.1.1 Integration of Position Accommodation 27

4.2 Position Accommodation Function 30

4.2.1 Tool to Sensor Transform 31

4.2.2 Provision for F/T Sensor Rotations 32

4.2.3 Biasing of the F/T Sensor 33

4.3 Dual Arm Implementation 34

4.4 Conclusion 35

5. EXPERIMENTS AND RESULTS 36

5.1 Free-Air Tests 36

5.2 Contact Tests 39

5.2.1 Insertion Tests 39

5.3 Two-Arm Tests 43

5.4 Conclusion 45

6. DISCUSSION AND CONCLUSIONS 47

6.1 Position-Based Force Control 47

6.2 Performance of the PAC Force Control 50

6.2.1 Force-Filtering 50

6.2.2 Slow-Motions 51

6.2.3 Implementation of Compliant Rotations 51

6.2.4 Limitations of PAC Force Control 53

6.2.,5 Dual-Arm Manipulation 54

6.3 Future Work 55

6.4 Conclusion 56

LITERATURE CITED 58

APPENDICES 61

A. SOFTWARE SOURCE ('ODE 61

iv

LIST OF TABLES

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 4.1

Table 5.1

Table 5.2

Table 6.1

Table 6.2

Testbed Joint Parameters 17

Rated Capabilities of PUMA 560 Arm 18

Modules used in VMEbus Cage 20

Force/Torque Sensor System 21

Cycle-Periods for Motion Control Tasks 29

Insertion Impedance: PD Position-Controller 42

Insertion Impedance: PID Position-Controller 42

Approximate Stiffness of Force Mechanisms: Z-axis 48

Approximate Force Resolution: Z-axis 48

V

LIST OF FIGURES

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Position-Based Force Control 6

(a) Ideal Arm and Spring; (b) Force Function Block 6

Mass-Spring-Damper Impedance Models: (a) Linear; (b) Ro-

tational 8

(a) Mounting of Force/Torque Sensor; (b) Kinematic Frames

of Flange, Sensor, and Tool-Tip 12

CIRSSE Robotic Testbed 16

CIRSSE Testbed Computer System 19

Architecture of MCS under CTOS 25

Trajectory Generator Data Flow 28

Trajectory Generator with Position Accommodation 28

Position Accommodation: Continuous Model 30

Position Accommodation: Discrete Model 32

Dual Independent Trajectory Generators 35

Manipulator in "Safe" Position 37

Linear Motion in Free-Air (Testla) 37

Linear Motion in Free-Air (Testlb) 38

Impact with Box: PD Position-Control (Test2a) 40

Impact with Box: PD Position-Control (Test2b) 40

Impact with Box: PID Position-Control (Test2c) 41

Impact with Box: PID Position-Control (Test2d) 41

Two-Arm Test: No Bias-Force (Test3a) 44

Two-Arm Test: Compression (Test3b) 44

Two-Arm Test: Tension (Test3c) 45

vi

Figure 6.1 Dual CooperativeTrajectory Generators 56

vii

ACKNOWLEDGMENT

I would like to expressmy heartfelt thanks to my advisor SteveMurphy. His guid-

ance,understanding,and patiencethroughout this project waswithout end. I must

also thank Alan Desrochers,without whosesupport I could not have completed this

project. Special thanks goes out to Lee Wilfinger, Kevin Holt, and the rest of the

CIRSSE crew I had the pleasure of working with.

I am forever grateful to my Morn and Dad for their continued moral and

financial support. Lastly, I would like to thank my friends Ann and April for their

encouragement and belief in me.

o°.

Vlll

ABSTRACT

As the need for robotic manipulation in fields such as manufacturing and telerobotics

increases, so does the need for effective methods of controlling the interaction forces

between the manipulators and their environment. Position Accommodation is a

form of robotic force control where the nominal path of the manipulator is modified

in response to forces and torques sensed at the tool-tip of the manipulator. The

response is tailored such that the manipulator emulates a mechanical impedance to

its environment. Position Accommodation falls under the category of position-based

robotic force control, and may be viewed as a form of Impedance Control.

This project explores the practical implementations of Position Accommoda-

tion into an 18 degree-of-freedom robotic testbed consisting of two PUMA 560 arms

mounted on two 3 DOF positioning platforms. Single and dual-arm architectures

for Position Accommodation are presented along with some experimental results.

Characteristics of position-based force control are discussed, along with some of the

limitations of Position Accommodation.

ix

CHAPTER 1

INTRODUCTION

It has long been a goal in robotic development that manipulators take on the complex

assembly and manufacturing tasks normally performed by human laborers. For

these tasks, the interaction forces between the manipulator and its environment

of workpieces, fixtures, obstacles, etc., can be significant, and must be controlled

to prevent deformation or breakage. For any assembly task with moderately tight

tolerances, it will be necessary for the manipulator to "comply" to unforeseen forces

due to misalignment errors, incomplete models, etc. A classic example is the task

of inserting a tapered peg into a hole. Other assembly and manufacturing tasks

require the application of a desired force, such as in crimping, drilling, and grinding.

For most of these tasks, some form of active force-feedback control will be necessary

to achieve consistent, reliable performance.

Position Accommodation is a form of robotic force control where the nomi-

nal path of the manipulator is modified in response to forces and torques sensed

at the tool-tip of the manipulator. The response can be controlIed such that the

manipulator will appear as a mechanical impedance to its environment, with com-

pliance capabilities in all six degrees-of-freedom (DOF). Position Accommodation

(PAC) uses the position-control system of the robotic arm directly so it can be im-

plemented on many robotic arms without modification of their existing controllers.

Through an impedance specification, the manipulator's response to external forces

can be tailored to suit the desired assembly task. In addition, bias-forces along any

of the six degrees of compliance can be specified, so that insertion forces/torques

can be applied.

Multiple-Manipulators Robotic manipulation with multiple arms has shown

promisefor significantly exceedingthe capabilities of a singlemanipulator. Manip-

ulation of massivepayloads,handling of tools, complex assemblytasks,extensions

to workspace,etc., aresomeof the advantagesforeseenfor multi-arm systems.To

enable any form of multi-arm manipulation the arms must again have the abil-

ity to "comply" to unforeseenforcesdue to misalignment, incomplete models,etc.

Multiple-arms also havethe capability for exerting internal forces and torques on

their workpiece that single arms cannot, and for this some form of active force con-

trol will be needed. Position Accommodation is seen as a promising method for

multi-arm force control.

1.1 Goals of the Project

The central goal of this project was the implementation of Position Accommo-

dation force control onto the 18 DOF robotic testbed developed here at the Center

for Intelligent Robotics Systems For Space Exploration (CIRSSE). The testbed con-

sists of two 6 DOF PUMA 560 arms mounted onto two 3 DOF positioning platforms.

The testbed was developed for research into space-based robotic applications, where

the areas of motion control, trajectory generation, task planning & coordination, vi-

sion, etc., could be explored and developed. One particular application looked at

is the assembly of the struts and nodes comprising the truss structure of a space-

station.

The PAC software developed for this project will become part of the installed

library of functions available for researchers wanting to perform assembly experi-

ments on the CIRSSE testbed. Single and multi-arm implementations were to be

developed, along with evaluations of their performance.

This report will present in detail the implementation of the PAC force control

functiotls into the testbed system. Characteristics of position-based force control

will be discussed,and somebasicproblemsmostly overlookedin current literature

will be identified and analyzed.

1.2 Brief Historical Review

The subject of robotic force control has been a long studied topic, with al-

most as many proposed methods as there are researchers in the field. Whitney[26]

provides a historical review and classification of most force control methods de-

veloped to date. Hogan[8] proposes Impedance Control as an effective method of

manipulation, and provides some comparisons to human manipulation. Maples and

Becker[13] provided some experimental results of several different force control im-

plementations. Hybrid Impedance has been discussed lately by Anderson[2]. The

stability of robotic force control has been widely studied, and is discussed by An[1],

Eppinger[5], and Lawrence[ill.

Multi-arm manipulation has just recently been of interest, with several force

control methods proposed by Wen[24, 25], Murphy[15], Kosuge[10], and Tao[20].

1.3 Report Organization

This report has been organized to provide a sufficient background on the theory

of Position Accommodation, along with a description of the CIRSSE testbed, before

discussing the implementation and performance of the PAC force control. With this

goal in mind, the following chapters are outlined:

Chapter 2 discusses the theory of position-based force control and analyzes the

force mechanisms involved. The PAC force control algorithms are presented

and explained in detail.

Chapter 3 gives a description of the CIRSSE testbed, with sections on the Hard-

ware and Software of the system. Emphasis will be on those systems directly

related with the force control implementation.

4

Chapter 4 describeshow the PAC forcecontrol algorithmswereimplementedinto

the testbedsystem.Details on the integration with trajectory generationwill

be discussed.

Chapter 5 presentsthe experimentsperformed with the PAC force control, and

displaysplots of the results.

Chapter 6 analyzes some of the characteristics of position-based force control, and

discusses the performance of the PAC force control method. Problems faced

when implementing the rotational compliance frames will also be discussed.

Appendix A contains a listing of the software used to implement the PAC force

control algorithms.

CHAPTER 2

THEORY AND ANALYSIS

This chapter will discuss position-based force control in general, and will analyze

some of the force mechanisms involved. The theory of Position Accommodation will

be presented along with some of its physical concepts.

2.1 Position-Based Force Control

In position-based force control, the location of a manipulator's end-effector,

or tool-tip, is used as the controlling variable in a force-feedback control system.

Figure 2.1 shows the block diagram of a general position-based force control system.

Using a force sensor mounted on the end of the manipulator, the interaction

forces between the manipulator and its environment, f_, are feed back and summed

with the desired force, fd. The force error, f_, is fed into a force-controller which

passes a desired change in position, Axd, onto the position-controller of the manipu-

lator. The position-controller will provide an actual change in position, Axe, which

will in turn produce an interaction force through the force mechanisms present in

the system.

2.1.1 Analysis of Force Mechanisms

In position-based force control systems, forces are generated by the compres-

sion of spring-elements present in the manipulation chain. Figure 2.2(a) depicts an

ideal arm compressing a pure spring-element. The corresponding force developed, f,

is simply found from the spring constant, k. and the displacement of the manipulator

along the axis of the spring. A.r. as

f = Ax k (2.1)

Desired

Force

fd t(tController Controller Mechanisms

fs] Force

/ Sensor
Sensed

Force

Actual

Force

fa
IB

Figure 2.1: Position-Based Force Control

(a)

Ax _--I. Ks I Af

(b)

Figure 2.2: (a) Ideal Arm and Spring; (b) Force Function Block

Figure 2.2(b) depicts this relationship in block diagram form. This can be directly

used as the Force Mechanisms block in Fig. 2.1. Thus, the stiffness of the spring-

elements present in the force control system directly effects the forward-gain of the

force control loop. The significance of this is that the stiffness of these spring-

components is often unknown, and can dynamically change during manipulation.

This can pose severe limitations on the maximum gains that can be used in the

force control loop, thus limiting its performance[18]. Often, the force control gains

are set relatively low to trade-off performance for stability.

There are two sources for the spring-components in a robotic manipulator:

1. Physical-Stiffness of manipulator linkages, force-sensors, workpieces, etc.

2. Servo-Stiffness of the manipulator's position-control system.

The Physical-Stiffness components are usually fairly large (> 10 4 [N/m]) as these

components are designed to have minimal deflection during manipulation. The

Servo-Stiffness depends on several factors including: (1) the gain of the position-

controllers; (2) the type of position-controller; and (3) the configuration of the

manipulator linkages.

Spring-components physically located in series can be lumped together into a

single stiffness term by the parallel combination of their spring constants:

KLumped

(2.2)

In static operation (i.e. no acceleration of the manipulator) the smallest spring

component will dominate Kc,mped, and I(, = KL,,,,ped in Fig. 2.2(b). The influence

of these force mechanisms on the force control experiments will be illustrated in

Chap. 5, followed with a more detail discussion of their effects in Chap. 6.

2.2 Position Accommodation

Position Accommodation (PAC) is a form of position-based force control where

the manipulator's nominal position can be modified in such a way as to have the

manipulator simulate a mechanical impedance to its environment. Thus, the "po-

sition" of the manipulator's tool-tip "accommodates" to forces exerted on it from

the environment. This is also described as "compliant" manipulation. By using

the manipulator's position-control system, the dynamics of the arm are effectively

decoupled fl'om the force control operation. This allows attention to be focused on

the force control dynamics themselves.

S

D_d B_ Force

/ td --------)
J

I

I

/ Spring k
J

J

J

/ Dsmping b

M&$$

m

Fon_ Ac_ing
Oo M_s

fs

AX

\\\\\\\

spask

.N
/

J

J

/ /////

Ro_I/on_

J

/

oo co)

Figure 2.3: Mass-Spring-Damper Impedance Models: (a) Linear;

(b) Rotational

DesU-e,d

Bias Tarqtm

"rd

CC (

T_'quc Ac_.ing
on M_s

(s¢=_d)

With the assumption that we are only concerned with interaction forces at the

grasp point, or tool-tip of the manipulator, forces and corresponding motions will

be described in the tool-frame of the manipulator.

The impedance to be simulated by the manipulator is most commonly repre-

sented as a mechanical mass-spring-damper system. Figure 2.3(a) shows a linear

model of such a system. The analogous rotational system is depicted in Fig. 2.3(b).

The differential equation of motion for the single-mass system shown in

Fig. 2.3(a) is written as

m A2 + bA2 + kAa: = 2Forces = f, + fd (2.:3)

(Note: fs as shown in Fig. 2.3(a) is negative). As an example, consider a manipulator

under PAC force control, with one linear DOF along the z-axis. This manipulator

would respond to forces felt along this axis just as the imaginary mass-spring-damper

system in Fig. 2.3 would.

To facilitate colnpliant manipulation with an arm capable of six degrees-of-

freedom, it is desired that the manipulator have the ability to comply to forces in

all six spatial degrees-of-freedom (i.e. the manipulator will move in the direction of

any applied force, and will rotate around the axis of any applied torque). This can

9

be referred to as "natural" motion for the manipulator because it is analogous to

the motion exhibited by a passive mechanical system when acted upon by external

forces (picture a bar of steel fixed at one end, with forces and torques applied to the

other). To accomplish this, the forces seen in the tool-frame are broken down into

their component parts (f_, f_, f_, rx, r u, rz), and applied to six versions of Eq. (2.3):

one for each spatial degree of freedom. In matrix form, Eq. (2.3) can be re-written

as

M A_¢ +/3 A± + K Ax = ZForces = (_f_ + f_) (2.4)

where:

M

K

f,

Ax

= The desired mass/inertia of the end effector

= The viscous damping

"- The return spring force

= The Phi-Matrix: transformation of forces/torques into the tool-frame

= The forces seen in force-sensor frame

= The desired, or bias, force in the tool-frame

= The displacement vector, x - x_e/

The matrices M,/3, and K are [6 x 6] diagonal matrices, where the [i, i] element

represents the rriass, damping, or spring parameter, respectively, for the ith spatial

axis. The Phi-Matrix, _5, is necessary because the force-sensor is not physically

located at the grasp point of the manipulator. Thus, forces sensed at the force-

sensor must be transformed into the corresponding forces felt at the tool-tip. This

will be discussed in Sec. 2.2.1. The position x_ef represents the nominal location of

the manipulator's tool-tip with no force applied.

Equation (2.4) will produce six decoupled differential-equations for &x: three

linear mbL" systems and three rotational jbk systems. After integration, the six equa-

tions will produce a displacement vector in the impedance space of the manipulator

10

in the form of:

Ax

Ay

LXz

ix = (2.5)
As

A¢

A0

where As, A¢, and A0 represents rotational displacements around the x, y, and z

axis, respectively, of the tool-frame.

Since the forces and torques are sensed in the cartesian space of the manip-

ulator's tool-frame, the displacement vector of Eq. (2.5) must be converted into a

homogeneous transform[7] representing the cartesian displacement of the manipu-

lator in its tool-frame. This transform will be referred to as Ta. For small-angle

displacements, the order of rotation will make little difference on the response of

the manipulator. When applied torques produce large rotations, the order of ro-

tation is quite significant, and different orderings can produce drastically different

results. This fact of implementation has received little attention in the literature.

For the force control experiments performed in this project, the following sequence

of rotations and translations were chosen for the conversion:

1. Yaw around the tool-frame x-axis by ._/Xa.

2. Pitch around the tool-frame y-axis by ._X¢.

3. Roll around the tool-frame z-axis by' _0.

4. Translate along tool-frame x-, 3'-. and z-axes by __Xx. _y, and .,Xz. respectively.

Combined, these form a. homogeneous transform as

.T,..x= T,x,:,.xy,_x=Rz,,,o Ry._¢ R x,_x_, (2.6)

11

This was chosen as the most straight-forward way to implement the Position Accom-

modation algorithm. The actual implementation will be discussed in Chap. 4. The

limitations of this method of implementing compliant rotations will be discussed in

Chap. 6.

2.2.1 The Phi-Matrix

For most implementations, the force/torque sensor is not located at the grasp

point of the manipulator. Typically, a six degree-of-freedom F/T sensor is embodied

in a strain-gauge bridge mounted between the flange of the robot and the gripper

mechanism. Figure 2.4(a) depicts how the F/T sensor was mounted on the PUMA

arms used in the experiments.

For compliant motion, it is desired that the manipulator act on forces/torques

seen at the tool-tip frame, T_. The F/T sensor will produce readings for forces/torques

seen about its coordinate frame, T,. Phi-Matrices[15] are used in general to translate

forces and torques seen at one frame of a rigid-link to another. Here, the rigid-link

is the combination of the gripper and the F/T sensor. Figure 2.4(b) shows the ref-

erence frames associated with the F/T sensor and the gripper. The homogeneous

transformation from the Tt frame to the T, frame is defined here as

For a force sensed in the T, frame, f,, the force in the Tt frame, ft, is found by

simply rotating the force back to the Tt frame:

f, = 'R,L (2.s)

Tile torque felt in the Tt frame, rt. will be the rotated torque sensed in the T, fi'ame.

re, summed with tile level'-arm torque induced bv tile forces sensed in the T, fiame:

• = '&r, + x L) (2.9)

12

"Tool" 1

Grasp Point /

(a)

Manipulmo_
Wrist

Mounting

Flange

Force / Torque

Sensor

Gripper

xf

/
Yf zf

x
s

/
Ys z

s

(b)

PUMA Flange Frame

Tf

Force / Torque Sensor

Frame

T
s

Tool-TipFrame

T t

Figure 2.4: (a) Mounting of Force/Torque Sensor; (b) Kinematic

Frames of Flange, Sensor, and Tool-Tip

13

The cross-product of Sp,,_ with f, may be represented in matrix form as

('p,,, × L) = "P,,,L,

where

0 -p_ pu

p_ 0 -p_

-py p_ 0

" 'R @_,,tR,JDt,s _ t

where 'Pt,, is found from tT_ as in Eqs. (2.10) and (2.11).

(2.1o)

(2.11)

(see Eq. (2.5))

Combining Eqs. (2.9), (2.11) and (2.12) will yield the torque in the Tt frame

t" t R= trot, + tRs'Rt Pt,_ ,f_ (2.13)

~

= tR, rs + tPt,_tRsL (2.14)

The Phi-Matrix operates on a stacked vector of forces and torques defined as

f_

L

fu

L

re

ry

T:

(2.15)

To transform this six-vector of forces from one frame to another, the Phi-Matrix is

formed from Eqs. (2.8) and (2.14) as

T

E I E 1=__tcT(t,S) = tRs Pt,s tH_ = tHs 0

0 tR, tP ~ tRs tR,
(2.16)

as

S S ~

The terms [p, Pv Pz] in Eq. (2.11) are the components of Pt,s. The term Pt,_ may

be derived from tPt,., by

(2.12)

14

Thus, to determine the forces/torques in the tool-tip frame (ft) given the

forces/torquessensedin the F/T sensorframe (Is), the Phi-Matrix is usedas

ft "= tcT(t, s)fs = d_fs (2.17)

2.3 Conclusion

This chapter has presented an overview of position-based force control, and

has analyzed some of the force mechanisms involved. The theory of Position Ac-

commodation has been presented along with some of the details involved with its

implementation. The next chapter will describe the hardware and software systems

of the CIRSSE testbed onto which the PAC force control was implemented.

CHAPTER 3

TESTBED DESCRIPTION

This chapter will describe the CIRSSE robotic testbed onto which the PAC force con-

trol algorithms were implemented. Descriptions of the robotic arms and computer-

control systems will be given along with an overview of the software systems devel-

oped for the testbed.

The CIRSSE testbed was created to provide an experimental base for the

development of cooperative robotic systems[4]. Of prime interest are assembly tasks

were two robotic arms work together (much as our own left and right arms) to

perform complex assembly tasks. Original motivation was taken from the strut and

node assembly tasks outlined by NASA for the construction of a space-station.

3.1 HARDWARE

The CIRSSE testbed is an integration of several robotic systems including

mechanical linkages, electrical motors and drives, computer-control, vision, force

sensing, etc. This scope of this section will be limited to those systems involved in

force control.

Figure 3.1 depicts the CIRSSE testbed. Two PUMA 6 DOF robotic arms are

mounted on a two 3 DOF transporter platforms. Together they provide a total of

18 degrees-of-freedom. Table 3.1 gives the range of motion for each joint in the

system. The coordinate frames and arm-configurations of the testbed are detailed

in [23]. The overall system has been designed for a joint-level interface such that

any combination of PUMA and platform .ioints may be enabled and used in an

experiment.

15

16

Figure 3.1: CIRSSE Robotic Testbed

17

Table 3.1: Testbed Joint Parameters

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Description Range

Left cart linear -1524, 76:2

Left cart rotate -150, 150

Left cart tilt -45, 45

Left PUMA shoulder -250, 70

Left PUMA upper-arm -225, 45

Left PUMA forearm -45, 225

Left PUMA wrist -110, 170

Left PUMA flange swivel -100, 100

Left PUMA flange rotate -266, 266

Left cart line}tr -762, 1524

Left cart rotate -150, 150

Left cart tilt

Left PUMA shoulder

Left PUMA upper-arm

Left PUMA forearm

Left PUMA wrist

Left PUMA flange swivel

-45, 45

-250, 70

-225, 45

-45, 225

-110, 170

-100, 100

Left PUMA flange rotate -266, 266

mm

degs

degs

degs

degs

degs

degs

degs

degs

mm

degs

degs

degs

degs

degs

degs

degs

degs

3.1.1 6 DOF PUMA Robots

The PUMA robots installed on the left and right sides of the testbed are

Unimation models 560 and 600, respectively. These two models are functionally

equivalent, and are mounted in identical fashion onto the transporter platforms.

The PUMAs are controlled by their original Unimation Controller boxes. The

controllers have six Motorola-6502 based digital servo cards; one for each joint of

the PUMA. These cards are mounted in a cage with a DEC 1 Q-Bus backplane.

Each digital servo card commands a power-amp, which in turn drives a permanent-

magnet DC joint motor. In addition, the digital servo cards interface with an

encoder attached to tile motor for joint position feedback. The power-amps are

tDigital Equipment Corporation.

18

Table 3.2: Rated Capabilities of PUMA 560 Arm

Item Specification Units

Max Payload (including gripper) 22.3 (5.0) N (lbs)

Static Force at Tool-tip 58 (13.0) N (lbs)

Position Repeatability 4-0.1 (4-0.004) mm (in)

Max Tool Acceleration , 1 g

Max Tool Velocity I 1.0 (3.3) m/s (fps)

linear four-quadrant drives under current-loop control. Table 3.2 gives some of the

rated capabilities of the PUMA 560 robot[22].

In controlling the joints of the PUMAs, the original VAL II control language

used in the Unimation Controller is bypassed, and commands are sent directly to

the digital servo cards. These cards can operate in two different modes:

Position Mode Position commands are sent to the digital servo cards every 28ms.

These are linearly interpolated down to 0.9ms, and summed with the position

feedback from the encoders. The position error is passed through an analog

PID controller to the power-amp's current-loop.

Torque Mode Torque commands are sent to the digital servo cards every 0.9ms.

These are scaled and sent directly out to the power-amp's current-loop. The

encoder position can be read from the servo card in the same 0.9ms period.

The PAC force-experiments were run with position-controllers that utilized the

Torque Mode of operation. These position-controllers are part of the Motion Con-

trol System described in Sec. 3.2.2. The dynamics of the PUMA 560 series arm are

detailed in [16].

19

I
_ V_ion,%rvio_s

Figure 3.2:

................. I

:;2

I
Mcqion Comrol IVME Cap

_O

F/r S_r,_r

GriFppex

RoboL_ TrL_ _or_ pl.ff_]

CIRSSE Testbed Computer System

3.1.2 3 DOF Transporter Platforms

The two transporter platforms of the testbed move along a linear rail mounted

to the floor. The platforms and rail were manufactured by the K.N. Aronson com-

pany of Arcade, NY. The platforms were developed to extend the working range

of the PUMA arms, and to give the testbed increased flexibility through joint-

redundancy. The platforms provide linear, rotational, and tilt positioning of the

PUMA arms. Details on the platforms and their control can be found in [3].

As with the PUMA arms, each joint of the platforms is driven by a DC motor

connected to a power-amp. The power-amps have built-in current-loop control.

Analog torque commands are sent directly to the power-amps from the testbed

Motion Control System (see Sec. 3.2.2). Each joint motor has an attached encoder

for joint position feedback.

9O

Table 3.3: Modules used in VMEbus Cage

Pos. I

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Make and Model Description

Motorola MVME-147SA-2 68030 Processor, 32MHz, 8 Meg Ram (Vx0)

Motorola MVME-224-1 Shared Memory Module

VMEbus to Q-Bus adapter Left Unimate Interface
not used

Motorola MVME-147SA-2 68030 Processor, 32MHz, 8 Meg Ram (Vx5)

Motorola MVME-135 68020 Processor, 16MHz, 1 Meg Ram (Vxl)

Motorola MVME-135 68020 Processor, 16MHz, 1 Meg Ram (Vx2)

Motorola MVME-135 68020 Processor, 16MHz, 1 Meg Ram (Vx3)

Motorola MVME-135 68020 Processor, 16MHz, 1 Meg Ram (Vx4)
Motorola MVME-340A Parallel Interface/Timer Module
Whedco VME 3570-1 Dual Channel Encoder Interface

Whedco VME 3570-1 Dual Channel Encoder Interface

Whedco VME 3570-1 Dual Channel Encoder Interface

Motorola MVME-340A Parallel Interface/Timer Module

Motorola DVME-628V Digital to Analog Converters
not used

VME Micro VMIVME-2532A High Voltage Digital I/O
not used

VMEbus to Q-Bus adapter Right Unimate Interface
not used

not used

3.1.3 Computer-Control System

Figure 3.2 shows a picture of the distributed computer system developed for

the CIRSSE testbed. At the heart of the system is a VMEbus[14] cage containing

a variety of modules used in the control of the testbed systems. Table 3.3 gives

a listing of the modules installed in the VMEbus cage at the time of this project.

The distributed nature of the computer-control system provides the flexibility and

performance needed to adequately control the various sub-systems of the testbed.

There are two VTa20 terminals attached to the V.MEbus cage: one connected

directly to CPU module Vx0 and the other connected to a switch-box going to the

other 5 CPUs (Vxl - Vx,5). These provide a user-interface to the control processes

21

Table 3.4: Force�Torque Sensor System

Make

Model

Lord Industrial Automation

15/50

Capacity Force 15 lbs

Torque 50 in-lbs

Resolution F_,Fu 0.174 oz

Fz 0.576 oz

T_, Ty, Tz 0.391 in-oz

Frequency Parallel 303 Hz

Response Port

running on each CPU module. In addition, the VMEbus cage is connected to

the CIRSSE computer network via an EtherNet gateway on CPU Vx0. This allows

processes running on the VMEbus CPUs to interface with other processing platforms

connected to the EtherNet, such as the SUN 2 workstations located in the testbed

lab.

To interface directly with the 6502 digital servo cards in the Unimation Con-

troller boxes, two VMEbus to Q-Bus adaptors were purchased. These facilitate the

control of the left and right PUMA arms directly from the processors in the VMEbus

cageN.

3.1.4 Force Sensors

Two Force/Torque sensors provide force-feedback for the testbed system. These

F/T sensors are mounted on the end of each PUMA arm, sandwiched between the

mounting flange and the gripper (see Fig. 2.4(a)). They provide force and torque

readings for all six spatial degrees-of-fi'ee(tom. Table 3.4 lists some of the specifica-

tions of the F/T sensors[12].

Low-level control of the F/T sensor hardware is accomplished via serial ports

2SUN Microsystems, Mountain View, CA.

22

on two of the processorsin the VMEbus cage.Forceand torque data is accessedvia

a parallel interfacebetweenthe F/T sensorhardwareand a Parallel Interface/Timer

(PIT) module in the VMEbus cage. This parallel data interface allows F/T data

readingsto be taken at 300Hz.

3.1.5 Pneumatic Grippers

On the end of each PUMA arm are mounted two pneumatic grippers. The

grippers were custom designed specifically for the handling of model struts used

in assembly experiments. The grippers use opposing air cylinders to control the

opening and closing of the jaws. Linear potentiometers and strain-gauges provide

feedback for position and/or force control of the gripper jaws. In addition, a cross-

fire sensor in the jaws can be used to sense when a strut is between them.

Two gripper control units provide the interface hardware between the gripper

mechanisms and CPU modules in the VMEbus cage[4]. Communication to the

gripper control units is accomplished via serial ports on the processors. The actual

servo control of the grippers is done through synchronous processes running on the

VMEbus CPUs.

The mass and inertia parameters of the grippers have been characterized, and

is detailed in [19].

3.2 SOFTWARE

The software developed for the CIRSSE testbed represents several man-years

of design and development efforts. It was designed with the goal to have as flexible

a system as possible without sacrificing performance.

The core of the system is the Vx\Vorks _ multi-tasking operating system, which

aWind River Systems. Alameda, CA.

23

runs on the Motorola processormodules in the VMEbus cage. This is a UNIX-

like operating system designedfor real-time micro-processorcontrol systems. It

has a several libraries of functions to support synchronoustiming, inter-process

communication,etc.

All the sourcecode for the testbed is written in the C language[9]. Code

development is done on SUN workstations running UNIX. Source code is cross-

compiledwith the GCC4 compiler to run on the Motorola processorslocated in the

VMEbus cage.

To provide support for software tasks distributed acrossseveral processing

platforms, the CIRSSE Testbed Operating System (CTOS) was developed as an

extension to the VxWorks OS. To provide a clean, consistent interface to the testbed

hardware, the Motion Control System (MCS) was designed and developed. These

two software systems will be described briefly in the following sections.

3.2.1 CIRSSE Testbed Operating System (CTOS)

CTOS[6, 4] was designed to provide a real-time, homogeneous, distributed op-

erating system in which processes used to control the testbed can communicate to

the testbed hardware, and with other processes, regardless of which processing plat-

form the process was running on. This allows developers to distribute their processes

across the CPU modules in the VMEbus cage, or even to the SUN workstations on

the CIRSSE EtherNet[17]. The obvious gain in processing power is somewhat offset

by additional communication overhead.

The processor-independent nature of CTOS allows the distribution of processes

on the VMEbus CPU modules to be rearranged without breaking the inter-process

communication links. At boot-up time. a configuration file defines the distribution

of the processes and support code.

4GNU project C Compiler, Free Software Foundation.

24

Highlights of the CTOS functionality include:

• A homogeneousmessage-passingsystemthat provides a standard communi-

cation interface,regardlessof the actual location of the sourceand destination

processes.Though not "real-time', the message-passingis sufficiently fast for

most inter-processcommunication.

• A time-synchronizationservicethat allowsmultiple processesacrossmultiple

CPU modulesto be synchronizedat different clock rates.

• A SharedMemory library for allowing severalprocessesto accessthe same

data at real-time speed,regardlessof which CPU module they areon. This

providesreal-time system-wideaccessto joint-position data, F/T sensordata,

etc.

3.2.2 Motion Control System (MCS)

The Motion Control System was designedto provide an architecture under

which the variouscomponentsof a robotic motion control systemcanbesupervised[6].

Figure 3.3depicts the architectureof the MCSsystemoperating under CTOS.

Central to MCS is the State Manager. This function oversees the operation and

inter-communication of the the processes involved in motion control. Before motion

can begin, the individual components must "register" with the State Manager, where

they will indicate which joints are to be used in an experiment. The State Manager

ensures that the proper functions are in place before enabling the operation of a

joint.

The Channel Drivers provide a clean interface to the motion hardware of the

testbed. The function of the Channel Drivers is to pass torque commands from the

motion Controllers out to the PUMA and Platform control hardware, and in return,

read the joint position encoder values fi'om the hardware and pass them back to the

25

CTOS

[VxWorks I

MCS

Trajecto_ Generator

Interpolator

_q

Platform
Controlle_ o_

Platform "_-
0Channel Driver

PUMA

Controllers

PUMA
Channel Driver

/I
Left Unimation

Figure 3.3: Architecture of MCS under CTOS

motion Controllers.

The PUMA and Platform controllers embody joint-level position control loops.

Present controllers include PD, PID, and gravity-compensation. The PUMA con-

trollers run at a whole-number multiple of the 0.9ms rate of the Unimation digital

servo cards. The Unimation joint controllers are used in their Torque Mode of

operation.

The Interpolators provide an asynchronous interface between the Trajectory

Generator and the motion Controllers. Joint-vectors are sent to the Interpolators

with an absolute time-stamp. The Interpolator uses this to correctly interpolate

commands to the Controllers.

The Trajectory Generator provides an asvnchronous interface between motion-

planning and motion-execution. The TG takes as input files containing a list of joint-

space "Knot-Points'[7]. It interpolates between these Knot-Points with blending

functions[21] to control the transition time from one trajectory to the next. Details

26

of how the PAC force control wasintegrated with the TG will begiven in the next

chapter.

Data exchangesbetweenthe above motion control componentstakes place

through the SharedMemoryModule in the VMEbus cage.This enablesthe different

componentsto be spreadout over the CPU modulesin the cage;providing a large

advantagein processingpower.

3.3 Conclusion

The CIRSSErobotic testbedwas designedto be a high-performance,multi-

purpose robotic systemthat will support a variety of research. Careful provisions

have been madefor the expansionand upgradeof various sub-systemsover time.

It is ideally suited for the robotic force control experimentsin that it hasan open

architecture with consistentinterfacesto the hardwareof the testbed. The central-

ized control of the two robotic armsenablescoordinated multi-arm experimentsto

be conducted.The distributed nature of the computer-controlsystem,while adding

someoverhead,greatly increasesthe flexibility and processingpower available for

the executionof control algorithms.

The next chapter will review in detail the implementation of the PAC force

control into the testbed.

CHAPTER 4

FORCE CONTROL IMPLEMENTATION

In the previous chapter, descriptions the the CIRSSE testbed Hardware and Soft-

ware systems were given. This chapter will focus on the implementation of the

Position Accommodation(PAC) force control algorithms into these systems.

4.1 Trajectory Generation

Figure 4.1 depicts the joint-space Trajectory Generator (TG) discussed in

Sec. 3.2.2. Joint-space Knot-Points are read asynchronously into the TG queue from

a file. After interpolating and blending these points according to preset parameters

of speed, acceleration-time, etc., joint-vector commands are sent at a periodic rate

to the Interpolator. From there, they go on to the Controllers which servo the

manipulator joints to the commanded positions. Table 4.1 lists the cycle-periods of

the motion functions used for the force experiments.

The architecture of the Motion Control System was designed such that the

TG could control from 1 to 18 joints, depending on what combination of PUMA

and Platform joints are desired. As part of the MCS architecture, it was decided

that any sensor-based path modification would take place at the TG level, as this

would centralize all path-related functions.

4.1.1 Integration of Position Accommodation

In Chap. 2 it was shown that the PAC equations produce a homogeneous

transform, T,a, that is to modify the nominal path of the manipulator. Since the

TG operates in joii_t-.space, forward-kinematics are required to convert the nominat

joint-vector, 0, into a homogeneous transform suitable for multiplication with Ta.

Correspondingly, inverse-kinematics are required to convert the modified transform

27

2S

KNOT-POINTFILE I

TG I 8

I QUEUE I
10

[BLENDING]

0

[INTERPOLATOR[

0

O_- Joint Vector

Figure 4.1: Trajectory Generator Data Flow

TG

KNOq'-POINT

FILE

.............. t0

IFWDKZNEMATICSI

A -

[INVKINEMATICSl

[h'_iTF.RPOLATOR]

I CON"fROLLERS]

IMPEDANCE

PARAMETERS

D_tr_d Fo¢_

POSITION

ACCOMMODATION

Ac_J_[Fore*

FORCE SENSORINTERFACE
FORCESENSOR

Figure 4.2: Trajectory Generator with Position Accommodation

29

Table 4.1: Cycle-Periods for Motion Control Tasks

Control Task

Trajectory Generator

PUMA Controllers

Platform Controllers

Cycle-Period] Units

22.5 ms

5.4 ms

5.4 ms

back into joint-space. Figure 4.2 depicts how the TG was altered to use the PAC path

modification. Built into the PAC architecture is the ability to read in Impedance

Parameters on-line from a data file. This greatly increases the flexibility of the

PAC force control system as numerous experiments can be run sequentially without

having to re-compile and re-boot the system.

To fully realize the cartesian path modifications of Ta, at least six joints of the

PUMA-Platform combination must be activated. As force control experiments may

be limited to use of a PUMA arm only, the 6 DOF forward- and inverse-kinematics

of the PUMA were used to implement the path modification. Thus, it can be said

that the PUMA arm performs the force control function, while the Platforms are

used only for motion. This division was also influenced by the fact that forward-

and inverse-kinematic routines were readily available for the PUMAs, while other

routines involving the Platforms were still being developed.
i

Referring to Fig. 4.2, the blended joint-vector, 0, is passed into the forward-

kinematics of the PUMA 1 arm to produce the nominal arm transform, T. Because

the path modification is to take place in the tool-frame of the manipulator, this

nominal transform is post-multiplied by Ta as:

r' = rra (4.t)

1These kinematics account for the Platform location and give a transform with respect to the
world coordinates of the testbed.

3O

Desired I Ve,

Force/Torque

fd .(,

f
S

Forces atTool Tip

Forces in Fir Sensor Frame

I Phi-Matrix _ MKS Scaling I

[T
Tool-Tip To [F/T Sensor Interface I

Sensor [Transform

[ForceScnsor]

,orJ I.t./M,,, ' ' I/

Damping

x[KM

Delta

Transform

Spatial ToTransform

F/T

Actual

Tool-Tip

Force/Torque

Figure 4.3: Position Accommodation: Continuous Model

The resulting transform, T', represents the "Accommodated" position of the manip-

ulator. This is passed through the inverse-kinematics of the PUMA to produce the

modified PUMA joint-vector, 0'. The Platform and PUMA joint-vectors are then

recombined and sent to the Interpolator.

The PAC function accepts as part of its parameter list a desired-force vector

of the form shown in Eq. (2.15). This desired-force is used to implement bias-forces

along the axes of compliance. Such bias-forces are used in some assembly tasks to

"snap" components together. As an additional feedback, the actual-force seen at

the tool-tip is passed back to the TG, where it can be used for data logging, force

thresholding, etc.

4.2 Position Accommodation Function

Figure 4.3 shows the continuous model for tile PAC function. The diagram

follows the theory laid down in Sec. 2.2, with the following additional functionality:

31

• A Selection-Vector used to select which spatial degrees-of-freedom will be en-

abled for Position Accommodation.

• A Dead-Zone function for limiting the effects of noise, etc.

Both of these functions are directed by additional parameters located in the data

file of Impedance Parameters.

The integrators depicted in Fig. 4.3 are implemented in the software using

first-order rectangular integration. Figure 4.4 depicts the discrete implementation

of the PAC function.

4.2.1 Tool to Sensor Transform

To properly transform the forces sensed at the F/T sensor to the tool-frame,

a Phi-Matrix (see Sec. 2.2.1) derived from the tool-tip-to-F/T sensor transform,

T, is utilized. Included in the forward and inverse kinematic routines is a tool-

transform, fTt, which defines the gripper or tool mounted to the flange of the PUMA

(refer to Fig. 2.4). Knowing this tool-transform, and the transform from the flange

to the F/T sensor frame, fT_, the tool-to-sensor transform is found as

'T, = [:T,] -1 :T, (4.2)

For proper' operation, it is imperative that the tool-transform used by the TG

correspond to the tool-to-sensor transform used by the PAC function. Without this.

forces will be "sensed" at one point, and "accommodated" for at another, producing

very unpredictable (and unnatural) motion. For this reason, the TG passes tTs to

the PAC function as part of its initialization. For single-arm experiments, the tool-

transform was set to the center of the gripper jaws. Dual-arm tool-transforms will

be discussed in Sec. 4.3.

32

Desired
wr

[6xl]
*.(Z,x' [

Actual
Ffr

[6xl]

Rccombinc] , [I
A x ,[Linear and _-_

l Rotational[[I

Displacements A

*Ts = Period of TG I

Rotate: Linear Displacement

J [6xl] Displacement
Vector

Spalial To

Transform

T_

Extract

Rotation
Matrix

I

Figure 4.4: Position Accommodation: Discrete Model

4.2.2 Provision for F/T Sensor Rotations

When the manipulator is under PAC force control, rotations will move the

axes of the F/T sensor away from their initial alignment with the nominal frame,

T. When this conditions occurs, linear forces will be sensed in the F/T sensor-,

or gripper-frame, but the PAC equations (see Eqs. (2.4) and (2.6)) will produce

displacements in the nominal frame, thus leading to some very "unnatural" motion.

To compensate for this, the linear displacements produced by the impedance equa-

tions were extracted from the displacement vector, Ax, and rotated back into the

original frame by using the rotational portion of the T_ transform computed in the

last interaction. The assumption here is that the manipulator attained this rotation

before the current F/T sensor readings were taken. Thus, the new displacement

vector is found as

Ax'= [Ap']Ar (4.3)

33

where

Ap'= [RApr_,io,,,]Ap (4.4)

Figure 4.4 depicts a discrete model of the PAC function with this linear-displacement

rotation shown. The performance and limitation of this method of dealing with the

rotations will be discussed in Chap. 6.

The source code for the PAC Function can be found in Appendix A, along

with some support functions for handling the data files of Impedance Parameters.

4.2.3 Biasing of the F/T Sensor

Before the manipulator is placed into the PAC force control mode, the pre-

existing forces registered by the F/T sensor must be biased out, as it is assumed

that the impedance equations are initialized with zero applied-force. Two factors

contribute to the non-contact forces seen by the F/T sensor:

1. The local gravity field acting upon the mass of the gripper and the F/T sensor.

2. Internal offsets in the strain-gauges and electronics of the F/T sensor.

The offsets internal to the F/T sensor are usually small (< 5%) and do not vary

significantly over time or sensor orientation. The offsets due to the gravity field can

be very large (depending on the mass of the gripper and payload), and will vary

widely as the manipulator rotates with respect to the local gravity field. During an

experiment, this gravity force-vector acts as an additional external force, and will

cause the manipulator to "sag" downward. Currently, only a static biasing of the

F/T sensor is performed prior to entering the PAC mode. Future versions of the

F/T sensor interface function may include on-line gravity-compensation.

Since most of the force control experiments involve only small rotations through

the local gravity field, the static biasing of the F/T sensor has been sufficient.

34

4.3 Dual Arm Implementation

When both armsare to manipulate a singleobject, kinematic errors will pro-

duce substantial linear and shearforces in the object as the armsmoveaway from

the initial starting position. This is especiallytrue for the 2-arm manipulation of

stiff objects. If the arms are under PID control, the joint torques would increase

until the object and/or arms bent enoughto accountfor the errors.

To avoid this problem, the PAC function is used with two 9-joint TGs: one

for eachof the left and right PUMA-Platform pairs. TheseTGs write joint-vectors

to a commonInterpolator, which in turn commandsthe Controllers for all 18joints

of the testbed. Figure 4.5showsthis dual-armarchitecture.

When in the PACforcecontrol mode,two separatetool-transforms will specify

wherethe tool-tips of eachmanipulator will be located. This will directly effect the

compliant motion during manipulation. Two schemeswerefound for locating the

tool-tips of eachmanipulator:

1. The tool-tips of eacharm werelocatedat the center of their grippers. In this

way, the arms behaved as they would under single-arm manipulation where

the forces were sensed at the grasp point of the grippers, and consequential

"compliance" was with respect to this grasp point.

2. The tool-tips of each arm where located at the center of the strut, i.e. the tool-

tips coincided. The premise for this was that the arms would work together

better when they were acting on the same point.

In the first scheme, motion files of Knot-Points for the two arms must take into

account the shape of the strut. In the second case. the motion commands will refer

to the same point, so one motion file for both arms could theoretically be used.

The performance of the dual-arm PAC force control will be discussed in Chaps. 5

and 6.

35

LEFt

Par_mete_

PositionAccomo_Aon

LEFt [FIT

Sensor

LEFT

L_T] el9!

RIGHT

RIGHT 10[9]

TG

0[9]

] F
J INTERPOLATOR

0[ls]

I CONTROLLERS

RIGHT

Paramete_

_od RIGHT 1

tion

a_on

Figure 4.5: Dual Independent Trajectory Generators

4.4 Conclusion

This chapter has presented a detailed overview of how the Position Accommo-

dation force control algorithms have been implemented into the CIRSSE testbed.

Specific attention has been paid to the integration of the PAC function into the tra-

jectory generation of the system. Continuous and discrete models of the PAC force

control function have been given, along with a method for handling large rotations

of the gripper under coinpliance. Dual-arm force control has bee:: discussed, along

with some options for its implementation.

The next chapter will present some of the experiments undertaken with the

PAC force control method, along with various graphs of the results.

CHAPTER 5

EXPERIMENTS AND RESULTS

This chapter will present some of the experiments performed with the PAC force

control, along with their results. The experiments fall into three basic categories:

1. Manipulator in free-air.

2. Manipulator contacting a fixed environment.

3. Two manipulators grasping a single object.

To simplify the analysis, most tests were performed along a single axis of compliance.

In practice, all six degrees of compliance are typically used for assembly tasks, but

the quantitative data from these tasks does not lend itself to a straightforward

analysis (i.e. it is difficult to understand the interactions of all six degrees-of-freedom

at once). Some tests with insertion tasks using the full 6 DOF compliance will be

discussed from a qualitative point of view. In the section involving the manipulator

contacting a fixed environment, a comparison will be made of the PAC force control

performance with PD and PID position-controllers.

For all the tests, a 5.4ms position-controller was used with a 22.5ms trajectory,

generator.

5.1 Free-Air Tests

For this series of tests, the arm was placed in a nominal "safe" position as

shown in Fig. ,5.1, with no payload, excepting the gripper mass.

In the first test, the compliance was enabled for the linear .:-axis only, with

just damping and spring terms. A bias-force of 10N was commanded in the z-axis

of the tool-frame (refer to Fig. 2.4). Figure 5.2 shows the linear-force and motion

36

37

PUMA

Platform

/

J

iL

:::_:_:_:_::.

......-.-.......

iiiiiiiliiliiii
N

]

Gripper

Figure 5.1: Manipulator in "Safe" Position

Z-axis: M = 0 Kg; B = 150 N/m/s; K = 20 N/m; Fbias = 10 N
r

-5

_. -I0

q5

-20

-25

-3O

-35

-4O

----Actual Force

_.. -Displacment - Predicted

.......Displacment-Actual

6 I0 12

Timc(sec)

Figure 5.2: Linear Motion in Free-Air (3?estla)

38

Z-axis: M = 0 Kg; B = 50 N/m/s; K = 20 N/m; Fbias = 5 N

,,-f.

-10

-151

-2O

\
_Actual F,orcc

....Displacment - FS"e_liaed

Displacmcnt -ActuRl

i

"250 2 12

..... :t:::::,_221.2_2.:
i |

4 6 8 10

Time(sec)

Figure 5.3: Linear Motion in Free-Air (Testlb)

of the manipulator. The motion of the arm has been measured in the world-space

of the testbed.

As can be seen in Fig. 5.2, the arm moves down stretching the imaginary

"spring" until the spring-force equals the bias-force. The damping directs the speed

of this motion. Along with the actual motion is a curve depicting the predicted

motion of such an impedance. This was simulated in MATLAB as a linear spring-

damper system. From the graph it can be seen that the motion of the manipulator

closely follows the predicted path. The actual-force plotted in Fig. 5.2 shows about

+0.5N of noise. This is attributed to "jerking" in the arm motion causing accelera-

tions of the gripper mass, thus producing an inertial-force on the gripper mass.

Figure 5.3 shows the same test repeated with slightly, different damping and

force terms. Notice that the position of the arm is settling out to approximately

39

-25cm,which correspondswith the expectedfinal position:

5[N]Force = 0.25[m]Displacement (5.1)
20[N/m]Spring

In Fig. 5.3 there can be seen some "jumping" of the position near the end

of the plot. This has been attributed to friction in the PUMA joints, and will be

discussed in Chap. 6.

5.2 Contact Tests

For these tests, the arm was again placed in a nominal "safe" position as shown

in Fig. 5.1, with a cardboard box placed directly beneath the gripper. Cardboard

has the characteristic of being fairly stiff, but will safely break away in case of a

malfunction. As before, only the z-axis was enabled, and a bias-force was given such

that the arm moved down to contact the box.

Figures 5.4 and 5.5 show two impact tests with a PD position-controller. Fig-

ures 5.6 and 5.7 show the same two tests with a PID position-controller. From the

graphs in Figs. 5.6 and 5.7 it can be seen that the PID position-controller induces

an oscillation in the force control when the manipulator comes in contact with the

surface of the box. This effect will be discussed in Chap. 6.

5.2.1 Insertion Tests

The struts and nodes use in the CIRSSE testbed are rudimentary versions

of the struts and nodes developed by NASA for constructing a space-station. The

struts are designed to "snap" into spring-loaded clips at each node. Each node is

designed to accept several struts spaced out by 120 °. The strut and node assembly

problem is detailed in [4].

During an insertion experiment, the manipulator grasps the strut in the middle

and positions it over the target nodes located on a table-top. To insert the strut,

40

0

-2

-4

-6
°

-10

-12

Z-axis(PD): M = 0 Kg; B = 150 N/m/s; K = 0 N/m, _ = 10 N

I

i

i

\

.--Actual Force

----Displacment

"140 2 12

Figure 5.4:

-_ ..

I I, lO

Time(sec)

Impact with Box: PD Position-Control (Test2a)

Z-axis(PD): M = 5 Kg; B = 150 N/m/s;K = 0 N/m; Fbias = 10 N

.-g

O

,.o

0

-2

-4

-6

-8

-10

-12

-14
0

i

---Actual Force

.... Displar merit

\

q

I i I i

2 4 6 8 10 12

Time(sec)

Figure 5.5: Impact with Box: PD Position-Control (Test2b)

41

Z-axis(PID): M = 0 Kg; B = 150 N/m/s; K = 0 N/m; Foias = I0 N

o _._eW1e_

-4 ;

i

-8

lo-12

-14

"160

-.------Actual Force

.__ -Displacment

I I I I

4 6 $ 10 12

Time(see)

Figure 5.6: Impact with Box: PID Position-Control (Test2c)

Z-axis(PID): M = 5 Kg; B = 150 N/m/s; K = 0 N/m; Fbias = 10 N

0

-2

-4

-6

-8

-10

-12

-14

-16
0

k_

" /\

",,,,._.. "I

2

i

I A

4 6

Time(sec)

I

J
t

i
8 10 12

Figure 5.7: Impact with Box: PID Position-Control (Test2d)

42

Table 5.1: Insertion Impedance: PD Position-Controller

Parameter _ Units -7

Mass(linear)

Mass(rotational)

Damping(linear)

Damping(rotational)

Spring(linear)

Spring(rotational)

Bias-Force(linear)

Bias-Torque(rotational)

90 90 100 kg

0 0 0 kg*m

360 360 7500 N/m/s

15 15 15 N*m/rad/s

180 180 0 N/m

l0 10 10 N*m/rad

0 0 30 N

0 0 0 N*m

Table 5.2: Insertion Impedance: PID Position-Controller

Parameter]1 z_,. l Y_x', I z_x'. Units

Mass(linear) 180 180 100 kg

Mass(rotational) 0 0 0 kg*m

Damping(linear) 720 720 2500 N/m/s

Damping(rotational) 50 50 25 N*m/rad/s

Spring(linear) 360 360 0 N/m

Spring(rotational) 15 15 15 N*m/rad

Bias-Force(linear) 0 0 10 N

Bias-Torque(rotational) 0 0 0 N_'m

the PAC force control is enabled with a bias-force to push the strut into the spring-

clips. For these insertions all six degrees of compliance were used. Table 5.1 gives

an example of the impedance parameters used in an insertion with a PD position-

controller. Insertions performed with a PID position-controller exhibited noticeable

oscillations, and the corresponding impedance parameters (Table 5.2) used were

much more heavily damped.

To determine when an insertion was complete, the actual-force seen at the

tool-tip was monitored, and the insertion was assumed finished when the actual-

force settled to within a small percentage of the desired bias-force. Visual inspection

43

would indicate if the strut had completelymissedthe nodespring-clips.

While the oscillations seenwith a PID position-controller would seemat first

glanceto be anundesirablebehavior,it wasobservedthat theseoscillationsactually

helped to "jiggle" a slightly misalignedstrut into the spring-clips. In addition, be-

causethe PID controllershavebetter positioning accuracythan the PD controllers,

strut alignment over the nodeswasusually better with the PID controller.

5.3 Two-Arm Tests

For theseseriesof tests the two PUMA arms werepositionedto graspa 0.7m-

long steel strut by both ends. The arms were in their "safe" configuration (see

Fig. 5.1) with the Platforms moved together to grasp the strut. Both arms were put

under PAC force control with identical impedance parameters. Bias-forces, when

applied, were set in opposing directions for the two arms such that a tension- or

compression-force was applied to the strut. The tool-tips of each arm were located

at the center of their gripper jaws.

Figure 5.8 shows the internal force, compression, and absolute position of the

strut with no bias-force applied. For the most part, the internal force of the strut

corresponds exactly with the compression of the strut, as expected. Large force

"spikes" can be seen when the absolute position of the strut accelerates (change

in slope), inducing an inertial force on the strut. The "drifting" exhibited by the

absolute position of the strut was observed in most of the two-arm tests, and was

attributed to the interaction between the PAC force-controllers of each arm.

Figures 5.9 and 5.10 show the same force and position parameters for a strut

under compression and tension, respectively. For these tests, the compliance was

restricted to only the x-axis of the tool-frame, along the length of the strut.

44

2Arm, XYZ-axes: M = 0 Kg; B = 150 N/m/s; K = 20 N/m; Fbias = 0 N

-2

-4

-6

-8

-10

w

--Inmraal Force(N)

---Strut Compr_ssion(0.Smm)

......Absolute Position(0.Smm)

!

-._.,

k 12

.... %

"\.

........... %.

i i

8 10

Time(sec)

Figure 5.8: Two-Arm Test: No Bias-Force (Test3a)

2Arm. X-axis: M = 0 Kg; B = 150 N/m/s; K = 20 N/m; FbiasL = 5 N; FtriasR ffi-5 N
10

2

0

-2

-4

-6

-8

-10
0

• ._ ° °. °,

• - """ ,,........

% ..,

_...._tem_ F-o_e(N)

.__qtrutCompmssion(0.Smm)
.Absolul_ Position(0.Smm)

I i

Time(sec)

12

Figure 5.9: Two-Arm Test: Compression (Test3b)

45

2Arm, X-axis: M -- 0 Kg; B = 150 N/m/s; K -- 20 N/m; F'biasL = -5 N; FbiasR = 5 N
10

8-.,- '"

6

4

2

-2

-4

-6
___Internal F_ce(N)

-8 ._.Smut Comp'_sion(0.5mm)
....Absolute Position(0.5mm)

1 I t I-100 4 6 8 10 12

Time(see)

Figure 5.10: Two-Arm Test: Tension (Test3c)

5.4 Conclusion

The tests of the manipulator in free-air demonstrated that the PAC force con-

trol would accurately emulate a desired mechanical-impedance. This performance

was degraded somewhat during slow motions, and this degradation has been at-

tributed to the effects of joint friction/stiction on the position-controllers. It can

be safely stated "that the performance of the PA C force control is directly dependent

on the capabilities of the positioning system. This will be true for all position-based

force control systems.

When contacting a fixed environment, the PAC force control would correctly

servo the arm to produce the desired bias-force. In comparing PD vs. PID position-

controllers, it was found that the PID position-controller would induced large force

and position oscillations when the arm came in contact with a stiff environment.

For this reason, the PD position-controller is chosen for most tasks requiring PAC

force control.

46

Numerous strut-insertion experiments have been performed with the PAC

force control. For these insertions, all six degrees of compliance are enabled with

a bias-force along the axis of insertion. While the PD position-controller produced

a "smoother" insertion, the the oscillations present when using the PID position-

controller would sometimes "jiggle" a slightly misaligned strut into the node spring-

clips.

With the test involving two arms grasping a single strut, it was shown that

the internal force of the strut can be controlled via the independent PAC force-

controllers running on both arms. Interactions between the force-controllers would

routinely produce a "drifting" motion of the strut. This "drifting" motion would

induce an inertial force in the strut, which could be discerned in the force graphs.

The next chapter will discuss the characteristics of position-based force control,

and review the performance of Position Accommodation force control as depicted

in the experiments.

CHAPTER 6

DISCUSSION AND CONCLUSIONS

This chapter will compare some of the theory and practice of robotic force control

using Position Accommodation. The characteristics of position-based force control

will be analyzed, and its comparative advantages and disadvantages will be listed.

The performance of the PAC force control will be judged, along with some discussion

of its limitations. Lastly, areas of further study will be identified.

6.1 Position-Based Force Control

Position-based force control was presented in Chap. 2. For most robotic sys-

tems, the feedback of joint positions is done via optical encoders. The resolution

of these encoders determines the absolute positioning resolution of the manipula-

tor. This positioning resolution will correspondingly determine a force resolution

related to the force mechanisms discussed in Sec. 2.1.1. The significance of these

force mechanisms will be discussed in this section, followed by a summary of the

advantages and disadvantages of position-based force control.

Force Resolution Using some estimations, the linear force resolution, Aft, of

the manipulator can be approximated from the linear position resolution of the

manipulator, Apl, and the lumped linear stiffness of the manipulator's position-

controller, force sensor, and gripper, kt, as

Xft = '.-Xptk (6.1)

47

48

Table 6.1: Approximate Stiffness of Force Mechanisms: Z-axis

Component

PD Position-Controller

PID Position-Controller

Force Sensor

Gripper

Approx. Stiffness[Units

l01 N/m

10 l° N/m

104 N/m

10 5 N/m

Table 6.2:

Parameter

Lumped-Stiffness, kt

Force Resolution, Aft

Approximate Force Resolution: Z-axis

PD Pos. Controller

99 9090

0.01

PID Pos. Controller I Units

N/m
0.9 N

Table 6.1 depicts the approximate linear stiffness the above components along their

z-axis(see Fig. 2.4). These can be lumped together according to Eq. (2.2). Estimat-

ing the linear positioning resolution of the PUMA arm to be(see Table 3.2)

_pt _ 0.1[mm] (6.2)

the approximate linear force resolution for both PD and PID position-controllers

can be found, and is shown in Table 6.2 along with the estimated lumped-stiffness.

Note that the smallest stiffness dominates the lumped term, as would be expected.

As can be seen in Table 6.2, there is a significant difference in the lumped-

stiffness and corresponding force resolution between the PD and PID position-

controllers. It can be inferred that this would greatly affect the performance of

the PAC force control and was demonstrated to do so in the experiments shown in

Sec. 5.2. The experiments run with the PID controller showed sustained oscillations

when contacting a fixed environment. These oscillations have been seen to persist

even when heavily damped impedance parameters have been used, thus leading to

49

the conclusionthat the oscillationsmay havebeencausednot by too much forward-

gain, but rather represented a limit-cycle behavior due to the coarseness of the force

resolution. This is one of the topics of further study discussed in a later section.

To avoid the oscillations seen in Sec. 5.2, a PD position-controller is used for

most tasks requiring PAC force control. This brings out the quandary of position-

based force control: for good positioning accuracy it is desired to have a very stiff

manipulation mechanism(i.e. PID control), but this will correspondingly produce

coarser force resolution. One option is to increase the positioning resolution, but

because many robotic controllers use digital position encoders and digital control

systems, there is a limit on how fine this position resolution can be. In practice, a

PD position-controller is generally used, and stiff environments are avoided.

Advantages/Disadvantages Some advantage and disadvantages of position-based

force control have been identified through this project and are listed below:

Advantages

• Easy to implement on existing manipulator control systems.

• Decouples the dynamics of the manipulator from the force control function.

• Integrates'directly with trajectory generation.

Disadvantages

• The position-control system will have a lower bandwidth than the joint-torque

controllers alone. Thus, a direct-force[13] control method which commands the

joint torques directly will usually have the potential for higher performance.

• The discrete(digital) positioning characteristic of most position-control sys-

tems can lead to coarse force resolution. This can induce a limit-cycle behavior

in the force control.

5O

• The stiffnessof the environmentis anuncontrolledvariablethat directly affects

the forward gain of the forcecontrol loop. Facing this unknown, force control

performanceis often traded for stability.

In spite of the abovedisadvantages,position-basedforce control appears to

be a viable method of robotic forcecontrol, as long as provisions are made for the

stiffnessand forceresolution of the manipulation systemand its environment.

6.2 Performance of the PAC Force Control

Judging the performance of the PAC force control was hampered by the sheer

complexity of its architecture: operating in all six degrees-of-freedom, it is difficult to

quantitatively assess its performance. In a qualitative sense, the PAC force control

performed quite well, especially when judged by its response to manually applied

forces and torques. The response was very predictable and had a "natural" motion

and feel to it. As the tests in Sec. 5.1 showed, the manipulator can accurately emu-

late a desired mechanical impedance, as long as the response necessary to emulated

the impedance does not exceed the capabilities of the position-controller(i.e, only

relatively damped impedances can be emulated).

The following sections will discuss some of the detailed performance charac-

teristics of the 1SAC force control.

6.2.1 Force-Filtering

From the diagrams in Figs. 4.3 and 4.4. it can be seen that the PAC force

control function acts as a second-order filt_r on the summed forces. This has the

effect of filtering out any noise or large spikes present in the F/T sensor signal. If

the PAC impedance is specified as only a damper and spring term. the system will

act as a first-order filter.

When tests were tried with a spring-term alone, the system became wildly

51

unstable. This lead to the conclusionthat the filtering affect of the first and/or

second-orderimpedanceswasnecessaryfor stable operation. This limitation was

not viewedto bea great handicapsincespring-only impedanceshavelittle practical

value.

6.2.2 Slow-Motions

The free-air experiment shown in Fig. 5.3 showed a slight "jumping" of the

manipulator's position when when the motion became relatively slow. This has been

attributed to the position-controller's response to stiction in the joints: the arm

would slow to a stop, the friction would become relatively large, and the position

error would build up until the arm "jumped" to its new position. This type of

behavior has been seen for all types of manipulator motion where the velocity is

relatively small.

The degradation of the position control during slow motions will produce a cor-

responding degradation in force control. The non-linear behavior of the joint-friction

may also contribute to the oscillations observed when the PAC force control was im-

plemented with a PID position-controller. Currently, the only option identified for

improving the slow-motion performance is the use of faster position-controllers with

higher proportional gains. This will require upgrading the processors and/or the

architecture of the Motion Control System.

6.2.3 Implementation of Compliant Rotations

Perhaps one of the most avoided topics in robotic force control is the problem

of implementing the compliant rotations of the full 6 DOF PAC force control. It

is disturbing to see the extent to which the full 6 DOF theory of robotic force

control has been developed in the literature with little or no recognition of the

inherent limitations of implementing these rotations with actual manipulators and

52

force sensors.

As was outlined in Sec.2.2, once a vector of spatial displacements(Ax) is

produced, it must be convertedinto a homogeneoustransform. For small rotations,

any order of rotations will producenearly identical responses,but oncethe rotations

becomesignificant severalproblemsarise:

1. The F/T sensoris no longer aligned with the original "nominal" tool-frame.

This wasdiscussedin Secs.2.2and 4.2.2.

2. It is undeterminedasto which framethe impedanceparametersshould follow;

i.e. should the desiredimpedancebe alignedwith the original tool-frame, or

should it follow with the gripper-frame?

3. When the impedanceof a certain axis doesnot include a spring term, it is

unclearwhat the motion of the manipulator shouldbe whenthis axisdisplaces

other axeswith spring terms. In other words, it appearspossibleto specifya

desiredimpedancewhich has no physical equivalent.

The implementation used in this project was outlined in Sec. 4.2.2, and has

the following characteristics:

• Impedance parameters will follow with the gripper-frame, i.e. an impedance

specified along the x-axis will remain with the x-axis of the gripper as it

rotates. Bias-forces will also follow the gripper-frame.

• With the rotation sequence outline in Sec. 2.2, compliant rotations about any

one of the gripper axes will work as expected. Compound rotations will onlv

work properly when performed in the following sequence: (1)rotation about

z; (2) rotation about y: (3) rotation about x.

• All rotations occur about the original "nominal" frame where the compliance

53

wasinitiated. Thus, large linear deviationsfrom this origin will exhibit com-

pliant rotations where the manipulator will "pivot" around the origin of the

original frame.

• Rotationof the linearcomplianceterms,asillustrated in Fig. 4.4,will generally

havelinear motions occurringalong the axis of the applied force (aswould be

desired).

Ideally, compliant rotations should be implementedin the order they are ac-

tually invokedon the manipulator. This could be accomplishedif the "nominal"

position of the manipulator wasupdatedeverycontrol-iteration to the newposition,

and subsequentrotations weresummedonto this position (i.e. everyrotation would

then bea relatively "small" rotation). Unfortunately, this method leadsto problems

in the manner in which the manipulator would "spring" back to its original position

after having beenlinearly displacedand rotated.

Sincemost of the assemblytasks undertakento date have not involved very

large rotations, the manner in which the rotations are currently implementedhas

not seriouslyaffectedthe forcecontrol performance.While ageneralizedmethod for

complying "naturally" to anyforce/torque appliedin all six degrees-of-freedomis not

foreseen,specializedcomplianceschemescanbe tailored to meet the requirements

of almost any given task, as hasbeendonewith the implementation usedfor this

project.

6.2.4 Limitations of PAC Force Control

The following identify some of the limitations encountered with PAC force

control:

1. The PAC algorithms do not take into account the inertial forces connected with

the masses of the F/T sensor, gripper, and pax'load. Fortunately, these have

54

a "dampening" effect as the inertial force will oppose the current acceleration

of the manipulator's tool-tip.

2. Due to its dependency on the inverse-kinematics of the PUMA arm, the PAC

algorithms will break down at the singularity points of the PUMA. Thus,

motion that passes through a configuration change is not possible at this time.

There are provisions in the kinematic code to work around this problem in the

future.

3. The effects of the local gravity field on the payload mass are not accounted for

as the manipulator rotates this mass with respect to the gravity field. Some

form of on-line gravity-compensation is planned as a future development for

the PAC force control implementation.

6.2.5 Dual-Arm Manipulation

Section 5.3 depicted the results of several two-arm force control experiments.

In general, the following was observed for two-arm PAC force control:

• The manipulators exhibit a "drifting" motion that appeared to be caused by

the two PAC force-controllers "fighting" each other. This effect was dimin-

ished if only one or two axes of compliance was enabled, and heavily damped

impedance parameters were used.

• Internal force control of compression and tension is possible, but is hampered

by: (1) differentiating between inertial and internal force; (2) difficulties in

force-servoing with stiff objects; and (3) determining whether the object is

under tension or compression(this depends on the shape of the object and

how it is grasped by the two manipulators).

• It is unclear how to handle large compliant rotations with dual-manipulators.

55

• It appeared that coinciding tool-tips worked slightly better than tool-tips cen-

tered at the grasp point of each manipulator. This is most certainly a qual-

itative judgment, and further research is needed to better understand the

difference.

With the PAC force control running on each arm, a strut was successfully

manipulated through several dual-arm paths. In addition, a dual-arm compliant

insertion has also been accomplished. Overall, the PAC force control proved suc-

cessful in enabling multi-arm manipulation to take place without passive compliance

mechanisms or undue stress and strain on the manipulators and workpieces.

6.3 Future Work

If nothing else, this project has identified several areas of further study and

development for Position Accommodation force control. The following outlines some

of these areas:

• Further investigation into the oscillations observed when the manipulator con-

tacts a stiff environment. Specifically, to determine the effect of force resolution

on this behavior.

• Development of higher bandwidth position-controllers. This should directly

improve the response and performance of the PAC force control.

• Further research into methods of applying compliant rotations, and of imple-

menting the displacement vector, _x, into a path modification for the manip-

ulator.

• Development of an on-line gravity-compensation scheme to cancel the effects

of the local gravity' field on the payload mass. This payload mass could be

characterized at run-time by some simple rotations at the start of an assembly

task.

56

_ c_._,i_ R_.._o

I

IN'IS

[Lmpodincc I O

Left Ri_,ht

TGTG

L
Composiu_

P_ition
Act.omod* tion

Rig}at [0

INTERPOLATOR

Left and Right
-- Foror./rorque+

FTS CHANNEL DRIVER]
0

Sensor Sensor

0

Lc_

Figure 6.1: Dual Cooperative Trajectory Generators

• Development of a centralized dual-arm force control architecture. This would

combine the forces from the left and right arms into a unified algorithm for

controlling the internal as well as the net forces on an object. Figure 6.1

depicts such a system.

6.4 Conclusion

This projei:t has thoroughly explored the implementation of Position Accom-

modation as a robotic force control method onto an 18 DOF robotic testbed. Several

experiments have demonstrated tile performance of this force control method with

both single- and dual-arm implementations. Many practical considerations and lim-

itations of this method of force control have presented that have not been previously

covered in-depth in the literature. In addition, a review and discussion of position-

based force control in general has been provided, along with some insights to the

force mechanisms invoh, ed.

57

The PAC force control algorithmsare presently installed as part of the soft-

ware library of functions availablefor experimentson the CIRSSEtestbed. These

algorithms currently support severalexperimentswith one- and two-arm assembly

and manipulation tasks,and havesignificantly increasedthe scopeof robotic tasks

now possiblewith the testbedmanipulators.

LITERATURE CITED

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[sl

[9]

[10]

[11]

[12]

An, C.H., and Hollerbach, J.M., "Dynamic Stability Issues in Force Control of

Manipulators", Proc. 1987 [EEE [nff. Conf. on Robotics and Automation,

Raleigh, NC, pp. 890-896.

Anderson, R.J., and Spong, M.W, "Hybrid Impedance Control of Robotic

Manipulators", Proc. 1987 IEEE Intl. Conf. on Robotics and Automation,

Raleigh, NC, pp. 1073-1080.

Cosentino, J., "Development of a Control System for a Pair of Robotic

Platforms", M.S. Thesis, ECSE Dept., Rensselaer Polytech. Inst., Troy, NY,

August, 1990.

Desrochers, A.A., ed, Intelligent Robotic Systems for Space Exploration,

Kluwer, Boston, 1992.

Eppinger, S.D., and Seering, W.P., "Understanding Bandwidth Limitations in

Robot Force Control", Proc. 1987 IEEE Intl. Conf. on Robotics and

Automation, Raleigh, NC, pp. 904-909.

Fieldhouse, K.R., et al, "Lecture Materials for the CTOS/MCS Introductory

Course", Rensselaer Polytech. Inst., Troy, NY, CIRSSE Report #97, i99I.

Fu, K.S., Gonzalez, R.C., and Lee, C.S.G., Robotics: Control, Sensing,

Vision, and Intelligence, McGraw-Hill, New York, 1987.

Hogan, N., "Impedance Control: An Approach to Manipulation, Parts I-III",

ASME Journal of Dynamic Systems, Measurement, and Control. vol. 107,

March 1985, pp. 1-24.

Kernighan, B., and Ritchie, D., The C Programming Language, 2nd Ed.,

Prentice Hall, Englewook Cliffs, N J, 1988.

Kosuge, K., et al, "Control of Single-Master Multi-Slave Manipulator System

Using VIM", Proc. I990 [EEE Intl. Conf. on Robotics and Automation,

Cincinnati, Ott, pp. 1172-1177.

Lawrence, D.A., "hnpedance Control Stability Properties in Common

Implementations", Proc. 1988 IEEE Intl. Co@ on Robotics a_d .4utomatiolz.

Philadelphia, PA, pp. 1185-1190.

Lord Corporation, Installation and Operations Manual for FIT Series

Force/Torque Sensing Systems, Industrial Automation Division. Cary, NC,
November 1987.

58

59

[13]

[14]

[15]

[16]

[17]

[18]

Maples, J.A., and Becker, J.J., "Experiments in Force Control of Robotic

Manipulators", Proc. 1986 IEEE Intl. Conf. on Robotics and Automation, San

Francisco, CA, pp. 695-702.

Motorola, Inc., The VMEbus Specification, October 1985.

Murphy, S.H., "Modeling and Simulation of Multiple Cooperating

Manipulators on a Mobile Platform", Doctor of Philosophy Thesis, ECSE

Dept., Rensselaer Polytech. Inst., Troy, NY, December, 1990.

Murphy, S., and Swift, D., "Dynamic Parameters and Inverse Dynamics for

the PUMA 560", Rensselaer Polytech. Inst., Troy, NY, CIRSSE Tech. Memo

#13, January, 1992.

Page, L., "Introduction to Using CTOS on Unix", Rensselaer Polytech. Inst.,

Troy, NY, CIRSSE Tech. Memo #16, April, 1992.

Roberts, R.K., Paul, R.P., and Hillberry, B.M., "The Effect of Wrist Force

Sensor Stiffness on the Control of Robotic Manipulators", Proc. 1985 IEEE

Intl. Conf. on Robotics and Automation, St. Louis, MO, pp. 269-274.

[19] Swift, D., "Kinematic and Dynamic Parameters for the Testbed Grippers and

Loads", Rensselaer Polytech. Inst., Troy, NY, CIRSSE Tech. Memo 4/:14,

January, 1992.

[20] Tao, J.M., and Luh, J.Y.S., "Position and Force Controls for Two

Coordinating Robots", Proc. 1991 IEEE Intl. Conf. on Robotics and

Automation, Sacramento, CA, pp. 176-181.

[21]

[22]

[23]

[24]

[2,5]

Taylor, Russell H., "Planning and Execution of Straight Line Manipulator

Trajectories", IBM Journal of Research and Development, Vol. 23, No. 4, July

1979.
v

Unimation, Inc., Unimate PUMA Robot Manual, Unimation Robotics,

Danbury, CT, April 1980.

Watson, J., "Testbed Kinematic Frames and Routines", Rensselaer Polytech.

Inst., Troy, NY, CIRSSE Tech. Memo #1, March, 1991.

Wen, J.T., and Murphy. S.H.. "Stability Analysis of Position and Force

Control for Robotic Arms", IEEE Trans. on Automatic Control, Vol. 36,

No. 3, March 1991, pp. 365-371.

Wen, J.T., and Murphy, S.H., "Position/Force Control in

Multiple-Manipulator Systems", AL4A Space Programs and Technologies

Conference, March 1992, Huntsville, AL, AIAA 92-1676.

6O

[26] Whitney, D.E., "Historical Perspective and State of the Art in Robot Force

Control,'Proc. I985 IEEE Intl. Conf. on Robotics and Automation, St. Louis,

MO, pp. 262-268.

APPENDIX A

SOFTWARE SOURCE CODE

This appendix containsthe sourcecodeusedto implement the Position Accommo-

dation algorithms.

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1991 ALL RIGHTS RESERVED.

Permission to use, distribute, and copy is granted ONLY for research

purposes, provided that this notice is displayed and the author is

acknowledged.

This software was developed at the facilities of the Center for

Intelligent Robotic Systems for Space Exploration, Troy, New York,

thanks to generous project funding by NASA.

Description: This file holds the function prototypes for the sensor based

Path modification routines.

--Key---Date Author Description,

0.1 10/11/81 MJ Ryan

0.2 10/21/91 MJ Ryan

0.3 10125/91 MJ Ryan

0.4 10/26/91 MJ Ryan

0.5 10128/91 MJ Ryan

0.6 10129/91 MJ Ryan

0.7 10/30/91 MJ Ryan

0.8 11/01/91 MJ Rya.n

0.9 11/05/91 MJ Ryan

0.10 11/11/91 MJ Ryan

Initial Release

Moved appropriate items into

pathModPrivate.h

added posAcomSetFTScale function

added pathModLibInit • posAcomReset

removed posAcomSetFTScale, added status to

posAcomPathMod

Modified pathModInit()

Modified posAcomPathMod()

Modified posAcomInit()

Added status for Bad pointers

Added force_dead_zone param to pathModLib()

Removed tool2CompliantTrans param

#ifndef pathModLibh

#define pathModLibh

61

62

/*--- Include files needed for types, etc */

#include "transLib.h"

#include "spatLib.h" /* for VECTOR6 types and functions */

#include "ftsLib.h"

/_--- FORCE_TORQUE_EHUM_TYPE

This typedef defines the order of reference of all 6-vectors used in

this package.
,/

typedef enum

{

TRANS_X,

TRANS_Y,

TRANS_Z,

ROTAT_X,

ROTAT_Y,

ROTAT_Z

/* translation along x */

/* translation along y */

/* translation along z */

/* rotation around x */

/* rotation around y */

/* rotation around z */

} FORCE_TORQUE_ENUM_TYPE;

/_ IMPEDANCE_TYPE

The order of reference for each component in the structure follows the

FORCE_TORQUE_EJUM_TYPE listed above (i.e. the 4th element of the mass

component refers to the rotational mass (inertia) around the x axis).
,/

typedef struct _impedance_type

{
VECTOR6

mass, /_ Mass [Kg] and Inertia [Kg_m]

damping, /_ Damping-lin [N/m/s] and Damping-rot [N_m/rad/s]

spring; /_ Spring-lin [N/m] and Spring-rot [N_m/rad]

} IMPEDANCE_TYPE;

,/
,/
,/

/_--- Status Codes

These are the status codes for the position accomodation function.

,/

typedef enum

{

PAC_FTS_OVERLOAD =

PAC_FTS_ERROR =

PAC_BAD_IMPEDANCE_PARAMS =

PAC_BAD_POINTERS =

PAC_TRANS_ERROR =

PAC_SPAT_ERROR =

} PAC_STATUS_TYPE ;

I, /_ Impedance parameters are bad

2, /_ Error using spatLib

3, /_ Impedance parameters are bad

4, /_ improper pointer arguments

5, /_ Error using transLib

6 /_ Error using spatLib

,/
,/
,/
,/
,/

/Iw

63

Function Prototypes
,/

/*** function: pathModLibInit **
I

[Description: General function for initializing the pathModLib.

I

extern void

pathModLibInit();

/**_ function: posAcomReset **_*_*=_*_*_*_*_*_*_#_

I

[Description: Resets the position accomodation integrators to zero.

[

extern void

posAcomReset();

Description: This function sets the impedance of the position accomodation

function (posAcomPathMod). The absolute value of all

parameters is used; so negative values behave as would

positive values.

NOTE: This function also resets the state variables of the

mass-spring-damper simulation back to zero.

The select vector is a six-vector of ones and zeros used to

select, or enable _hich axises of accommodation are to be

activated. A value of (0) de-selects (disables) an axis;

any value other than (0) (i.e. I) selects (enables) an axis.

The order of selection is defined in FORCE_TORQUE_ENUM_TYPE.

The desired_F_T_dead_zone is a six-vector depicting the dead-

zone to be implemented on the summed forces acting on the

mass-damper-spring system.

The tool2SensorTrans describes the transform from the desired

compliant tool-tip to the force/torque sensor frame.

extern PAC_STATUS_TYPE /*ret: status */

posAcomInit

(IMPEDANCE_TYPE *desired_impedance, /* in: impendance parameters */

VECTOR6 *desired_select_vector, /* in: select vector */

VECTOR6 *desired_F_T_dead_zone, /* in: F & T dead zone */

TRANSFORM *tool2SensorTrans, /* in: desired compliant tool tip */

FTS_ID desired_ftsId, /* in: Id of force sensor */

64

float trajGenPeriod); /* in: traj-gen period (secs) */

DESCRIPTION: This function returns a delta-postion transform given a

desired force vector. The actual (measured) arm force is

accessed using the chanYtsLib. The desired impedance is set

using the posAcomSetImpedance function.

The desired_force_torque vector is in accordance _ith the

FORCE_TORQUE_ENUM_TYPE order listed above.

extern PAC_STATUS_TYPE /*ret: status */

posAcomPathMod

(VECTOr6 *desired_F_T, /* in: desired force[N]/torque[Nm]: tool-frame*/

TRANSFORM *delta_trans, /*out: delta-transform */

VECTOR6 *actual_F_T); /*out: actual force[N]/torque: tool-frame _/

/*** end of file: pathModLib.h **

#endif /* PATHMODLIB H */

65

I* %wXXGX *I

1.** File: pathModPrivate.h **********,*******************,**,*******.*******

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1991 ALL RIGHTS RESERVED.

Permission to use, distribute, and copy is granted ONLY for research

purposes, provided that this notice is displayed and the author is

acknowledged.

This software was developed at the facilities of the Center for

Intelligent Robotic Systems for Space Exploration, Troy, New York,

thanks to generous project funding by NASA.

Description: This file holds private variables, type, etc. for the sensor

based Path modification routines.

--Rev---Date Author Description

0.I I0121/91 MJ Ryan Initial Release

0.2 10/25/91 MJ Kyan Lowered force/torque sensor gains.

0.3 10/28/91 MJ Ryan Fixed conversion gains, Added force/torque

limits.

#ifndef pathModPrivateh

#define pathModPrivateh

/* Constants ,/

/*

** Constant for z-distance from end effector frame (at tool tip)

** to the force sensor frame:

*/

#define TOOL_TO_SENSOK_Z (-o.lso) /* meters */

/* Constants for force and torque conversion */

#define F_CONV (0.0556028) /* force: uf to Newtons */

#define T_CONV (0.00141231) /* torque: uf*in to N*m */

/* Iinital constants for impedance */

66

/* Mass/Inertia */

#define M_X (I.0)

#define M_Y (I.0)

#define M_Z (I.0)

#define I_X (I.0)

#define I_Y (1.0)

#define I_Z (I.0)

/* damping */

#define D_X (1.0)

#define D_Y (1.0)

#define D_Z (I.0)

#define D_R_X (I.0)

#define D_R_Y (1.0)

#define D_R_Z (I.0)

/* spring */

#define K_X (1.0)

#define K_Y (1.0)

#define K_Z (1.0)

#define K_K_X (I.0)

#define K_R_Y (I.0)

#define K_R_Z (I.0)

/* kg */

I* kg*m *I

I* Nlmls *I

/* N*m/rad/s */

I* Nlm *I

/* N*m/rad */

I* selection definitions */

#define SELECT_I (0)

#define SELECT_2 (0)

#define SELECT_3 (1)

#define SELECT_4 (0)

#define SELECT_5 (0)

#define SELECT_6 (0)

/* Default Time Period */

#define T_S (0.040) /* defaults to 40ms */

67

/* @(#)pathRodLib.c 1.1 2/15/92 */

t*** File: pathModLib.c **

NOTICE OF COPYRIGHT

Copyright (C) Rensselaer Polytechnic Institute.

1992 ALL RIGHTS RESERVED.

Permission to use, distribute, and copy is granted ONLY for research

pu__oses, provided that this notice is displayed and the author is

acknowledged.

This software was developed at the facilities of the Center for

Intelligent Robotic Systems for Space Exploration, Troy, New York,

thanks to generous project funding by NASA.

Description: This file holds the function for the sensor based

Path modification routines.

--Rev---Date Author Description

1.1 02/16/92 HJ Ryan Initial Release

1.2 04/23/92 HJ Ryan Fixed delay in posAcomPathMod, general cleanup

/* TBD:

I - use ftsCha_ib when ready

*/

#include "vxWorks.h"

#include "stdioLib.h"

#include "math.h"

#include "logLib.h"

#include "cirsse.h" /* constants, etc */

#include

#include

#include

"ftsLib.h"

"pathModLib.h"

"pathModPrivate.h"

/* force torque sensors */

/* Constants

const static VECTOR6

/* This is used to initialize state variables */

Zero_6 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

const static TRANSFORM

identityTrans = { FASTX,

{1.o, o.o, o.o},
{o.o, 1.o, o.o},

{o.o, o.o, i.o},

{o.o, o.o, o.o},

./

68

{o.o, o.o, o.o},
1.o };

/* Static variables ,/

** This transform describes the transformation from the end effector

_ frame (at the tool tip) to the force sensor frame. It is used with the

ee routine spatPhiTransMult() in order to determine the forces felt at

e_ the tool tip.

*/

static TRANSFORM toolTipToSensorFrame =

{ FASTX,

{I.o, o.o, o.o},

{o.o, 1.o, o.o},

{o.o, o.o, I.o},

{0.0, 0.0, TOOL_TO_SENSOR_Z},

{o.o, o.o, o.o},
1.o };

This transform will hold the rotation part of the previous deltaTrans

matrix. It is used to rotate the linear motions into the rotated frame.

,/

static TRANSFORM oldRotationTrans =

{ FASTX,

{1.o, o.o, o.o},

{o.o, 1.o, o.o},

{o.o, o.o, I.o},

{o.o, o.o, o.o},

{o.o, o.o, o.o},
1.o };

static IMPEDANCE_TYPE

/* the impedance is init to some stable mass-spring-damper */

impedance = { M_X, M_Y, M_Z, I_X, I_Y, I_Z,

D_X, D_Y, D Z, D_R_X, D_R_Y, D_R_Z,

K_X, K_Y, K_Z, K_R_X, K_R_Y, K_R_Z };

static VECTOR6

/* these are the state variables for the delta position�rotation system */

delta_rate[2] = { {0.0,0.0,0.0,0.0,0.0,0.0},{0.0,0.0,0.0,0.0,0.0,0.0} },

delta_pos[2] = { {0.0,0.0,0.0,0.0,0.0,0.0},{0.0,0.0,0.0,0.0,0.0,0.0} },

/= the select vector selects which axis of compliance are active */

69

select_vector = { SELECT_I, SELECT_2, SELECT_3,

SELECT_4, SELECT_5, SELECT_6 },

F_T_dead_zone = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0},

w_n = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0 },

zeta = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

/_ dead-zone params _/

/* natural frequency */

/_ damping ratio _/

static float

Ts = T_S ; /_ defaults to 40 ms _/

static int

system_order[6] = { 2, 2, 2, 2, 2, 2 } ; /_ holds order of systems _/

static FTS_ID

ftsId = FTS01422; /* initialized to right arm fts */

/_ function: pathModLibInit __*_*_*_**_*_*_***_*_

I

I Description: General function for initializing the pathModLib.

I

l--rev---date author description,

I 0.2 10/26/91 MJ ryan initial release

___$________$_$_/

void /" ret: void _/

pathModLibInit(void)

{

/* TBD */

}

/*** end of function: pathModLibInit ***/

function: posAcomKeset ***

Description: This function resets the position accomodation integrators to

zero.

--rev---date author description-

0.I 10/26/91 MJ ryan initial release

0.2 11/08/91 M3 ryan added reset of oldKotationTrans

$___m_$___$__$____/

void /* rat: void ./

posAcomKeset(void)

{

int i;

/* initialize state vectors to zero */

for (i=O; i<2; i++)

7O

delta_rate[i] = Zero_6;

delta_pos [i] = Zero_6;

/* initialize oldRoZationTrans */

oldKotationTrans = identityTrans;

}

/*** end of function: posAcomReset ***/

Description: This function initializes the parameters for the posAcomPathMod

function, this includes:

the impedance parameters

the selection vector

the F_T_dead_zone

the tool-to-sensor-trams

the desired ft sensor ID

the trajectory generator period

NOTE: this function also resets the state variables of the

mass-spring-damper simulation back to zero.

--rev---date author description-

0.I 10/07/91 MJ Ryan

0.2 10/21/91 MJ Ryan

0.3 10/26/91 MJ Ryan

0.4 10/28/91 MJ Ryam

0.5 10/29/91 MJ Ryan

0.6 10/30/91 MJ Ryam

0.7 11/01/91 MJ Ryan

0.8 11/05/91 MJ Ryam

0.9 11/11/91 MJ Ryan

initial release

added state vector initialization

Added calculation of natural frequency and

Damping

Added status return

Added tool2SensorTrans _ tool2CompliantTrans

Formated printf output.

Added fts Id number to parameters

Added error checking for null pointers

Removed tool2CompliantTrans

Added desired_F_T_dead_zone

PAC_STATUS_TYPE /* ret: status */

posAcomlnit

(IMPEDANCE_TYPE *desired_impedance, /* in: impedance parameters */

VECTOK6 *desired_select_vector, /* in: selection vector */

VECTOK6 *desired_F_T_dead_zone. /* in: F • T dead zone */

TKANSFOKM *tool2SensorTrans, /* in: desired compliant tool tip */

FTS_ID desired_ftsId, /* in: Id of force sensor */

float trajGenPeriod)/* in: traj-gen period (secs) */

int i;

char

71

bufferl [80],

buff er2 [801 ,

buffer3 [80] ;

PAC_STATUS_TYPE

status = OK; /* Initialize to OK = 0 */

/* initialize local globals */

__n = Zero_6;

zeta = Zero_6;

if (desired_impedance != NULL)

for (i=O; i<6; i++)
{

impedance.mass, v [i] = labs

impedance, damping, v [i] = fabs_

impedance.spring.v[i] = fabs_

desired_impedance->mass.v[i]);

desired_impedance->damping.v[i]);

desired_impedance->spring.v[i]);

if (impedance.mass.v[i] != 0.0)

system_order[i] = 2; /* mass-spring-damper */

/* find the natural frequency in Hz*/

w_n.v[i] =

(sqrt(impedance.spring.vii] / impedance.mass.v[i]))/ PI2;

if (impedance.spring.v[i] != 0.0)

zeta. v [i] = impedance, damping, v [i]

/ (2.0 * sqrt(impedance.spring.v[i] * impedance.mass.v[i]));

}

else if (impedance.damping.vii]

system_order[i] = 1;

!= 0.0)

/* damper-spring */

else if (impedance.spring.v[i] != 0.0)

{

system_order[i] = O; /_ spring only */

logMsg("\O07 \007 \007 WARNING!!!: SPRING ONLY IS UNSTABLE!!!");

}

else

{

logMsg("error: mass=spring=damper=O ");

impedance.spring.vii] = 10.0;

status = PAC BAD_IMPEDANCE_PARAMS;

}

}/* end of for loop */

else

logMsg

("\007\007\007 WARNING!!!: posAcomInit: using default impedance!!!")_

72

if (desired_select_vector != NULL)

for (i=O; i<6; i++)

if (desired_select_vector->v[i] == 0.0)

select_vector.v[i] = 0.0;

else

select_vector.v[i] = 1.0;

else

logMsg

("\007\007\007 WARNING!!!: posAcomInit: using default select vector!!!");

/* initialize state vectors to zero */

for (it0; i<2; i++)

{

delta_rate[i] = Zero_6;

delta_pos[i] = Zero_6;

}

if (desired_F_T_dead_zone != NULL)

F_T_dead_zone = (*desired_F_T_dead_zone);

else

logMsg

("\007\007\007 WARNING!!!: posAcomInit: using default F_T_dead_zone!!!");

/* copy tool-tip to sensor frame transform */

if (tool2SensorTrans !: NULL)

toolTipToSensorFrame : (*tool2SensorTrans);

else

logMsg

("\007\007\007 WARNING!!!: posAcomlnit: using default phi matrix!!!");

/* copy ftsld */

ftsld = desired_ftsld;

/* set sample period */

Ts = fabs(trajGenPeriod);

#if I

/*

print out system order, frequency, damping, and sample period

*/

logMsg("\n\n");

sprinCf(bufferl, "%5d %5d %5d %5d %5d %5d",

?.3

system_order[O] , system_order[l] , system_order[2] ,

system_order [3] , system_order [4] , system_order [5]);

logMsg(" P.A. Sys Order: 7,s\n", buffer1);

sprintf(buffer2, "_5.2f _5.2f _5.2f _5.2f

w_n.v[O], w_n.v[1], w_n.v[2],

w_n.v[3], w_n.v[4], w_n.vE53);

IoEMsE(" P.A. Nat Freq : _s\n '°, buffer2);

Z5.2f Z5.2f",

sprintf(buffer3, "%5.2f _5.2f _5.2f %5.2f

zeta.v[O], zeta.v[1], zeta.v[2],

zeta.v[3], zeta.v[4], zeta.v[5]);

logMsg(" P.A. Zeta : _s\n", buffer3);

_S.2f %5.2f",

logMsg(" P.A. Period : _.4f\n", Ts);

logMsg("\n\n");

#endif

return(status);

} /*** end of function: posAcomInit ****/

/*** function: getForceTorque ***

Description: This is an access function for the measured force_torque.

--rev---date author description

0.1 10/11/91 MJ Ryan

0.2 10/21/91 NJ Ryan

0.3 10/23191 NJ Ryan

0.4 10125/91 MJ Ryan

0.5 10/28/91 MJ Ryan

0.6 11/11/91 MJ Ryan

initial release

added call to spatPhiTransMult

added call to ftsLib

Use F_T_Scale vector now

F_T_Scale vector now fixed inside here

Removed F_T_Dead_Band; implemented elsewhere

$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$_$$$$$$$$$$$$$$$$_$$$$$$$$$$$$$$/

static PAC_STATUS_TYPE /* ret: void */

getForceTorque

(VECTOR6 *toolTip_F_T) /* out: tool tip forces */

{
const VECTOR6

F_T_Scale = { F_CONV, F_CONV, F_CONV, T_CONV, T_CONV, T_CONV };

PAC_STATUS_TYPE

status = OK;

int

i,

74

ftsStatus;

short int

temp_F_T[6] = {0, 0, 0, 0, O, 0};

VECTOR6

measured_F_T = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

#if 0 /* to be used _hen ready */

/* get force-torque vector from chanLib */

if (chanftsvectorread(measured_f_t.v, slot, mode)

{

logMsg("error using chanftsvectorread ");

measured_F_T = Zero_6;

}

!= chan_fts_ok)

/*? temporary fix before force drivers are ready */

measured_F_T = Zero_6;

#endif

/* call force sensor directly */

ftsStatus = ftsRead(ftsId, temp_F_T);

if (ftsStatus != OK)

logMsg("error using ftsRead \n");

if (ftsStatus = FTS_SENSOR_OVERLOAD)

return(PAC_FTS_0VERLOAD);

else

return(PAC_FTS_ERROR);

/* Convert forces_torques into mks units */

for (i=O; i<6; i++)

{

measured_F_T.v[i] = (float) (temp_F_TEi])

measured_F_T.v[i] *= F_T_Scale.v[i];

}

premultiply force vector by Phi matrix to translate forces • torques

into the the tool-tip frame.

if (spatPhiTransMult(toolTip_F_T,

&measured_F_T,

_toolTipToSensorFrame) == NULL)

75

logMsg("error using spatPhiTransMult ");

(*toolTip_F_T) = Zero_6;

status = PAC_SPAT_ERROR;

/* if status is bad, always return 0 */

if (status != OK)

(*toolTip_F_T) = Zero_6;

return(status);

}/*** end of function: getForceTorque *****/

Description: This function returns a delta-postion transform given a

desired force vector. The desired impedance is set

using the posAcomInit function.

This function simulates six decoupled mass-spring-damper

systems. The proper state equations are choosen for system

orders of:

O: spring only

1: spring and damper

2: mass, spring and damper

--rev---date author description

10/11/91 MJ Ryan

10/21/91 M3 Ryan

10128191 N3 Ryan

10128191 M3 Ryan

I0/29/91 NJ Ryan

11/05/91 MJ Ryan

11/08/91 MJ Ryan

0 1

0 2

0 3

04

0 S

0 6

07

0.8 11/11/91 M3 Ryan

0.9 04/23/92 M3 Ryan

initial release

_moved delta_rate & delta_pos into body.

Added Force _ torque limits check, added status

Removed Force & torque limits check

Fixed spatRot calls: Swapped rot matrices

use spatPhiMult instead of spatRot now

Disable R matrix; Added rotation of linear

delta's(x,y,z) with the rotation portion of the

previous delta_trans.

Added F_T_dead_zone processing

Fixed delay of I; cleanup

PAC_STATUS_TYPE

posAcomPathMod

(VECTOR6 *desired_F_T,

TRANSFORM *delta_trans,

VECTOR6 *actual F T)

{

PAC_STATUS_TYPE

status = OK;

/*ret: status */

/, in: desired force/torque vector: tool-frame ,/

/,out: delta-transform ,/

/,out: actual force/torque: tool-frame */

/* init status to OK = 0 */

76

int

i,

temp;

static int

k =0,

k_1 = I;

/* current state, k _/

/_ previous state, k-1 _/

/_ use this enum with VECTOR6 types _/

enum

{ ix, ly, iz, rx, ry, rz};

VECTOR6

delta_accel,

delta_vector,

toolTip_F_T,

sumTool_F_T;

/_ acceleration variables in compliance frame _/

/_ output delta vector in tool-tip frame _/

/_ measured forcesktorque in tool-tip frame _/

/_ sum of forcektorques in tool-tip frame _/

VECTOR3

deltaLin = { 0.0, 0.0, 0.0 },

deltaLinRotated = { 0.0, 0.0, 0.0 };

/_ check for null pointers _/

if (desired_F_T == NULL)J delta_trans == NULL II actual_F_T == NULL)

{

logMsg

("\007\007\007 WARNING!!!: posAcomPathMod: NULL pointers passed!!!");

return (PAC_BAD_POINTERS);

}

/_ get the current tool-tip forces and torques _/

status = getForceTorque(ktoolTip_F_T);

if (status != OK)

return(status);

/* Copy tool-tip f/t into acutal_F_T for feedback */

(*actual_F_T) = toolTip_F_T;

for (i=O; i<6; i++)

{

/_ sum forces/torques on/around tool-tip; use select vector */

sumTool_F_T.v[i]

= (toolTip_F_T.v[i] + desired_F_T->v[i]) * select_vector.vii]

/* implement F_T_dead_zone */

if (fabs(sumTool_F_T.v[i]) <= F_T_dead_zone.v [i])

sumTool_F_T, v [i] = 0.0 ;

77

else

if (sumTool_F_T.v[i] >= 0.O)

sumTool_F_T,v [i] -= F_T_dead_zone.v[i] ;

else

sumTool_F_T.v[i] += F_T_dead_zone.v[i] ;

Evaluate Mass-spring-damping state equations (10/11/91MJR)

./

for (i=0; i<6; i++)

{

switch(system_order [i])

{

case 2 :

delt a_accel, v [i]

= (sumTool_F_T.v[i]

- impedance.damping, v[i] * delta_rate [k_1]. vii]

- impedance.sprinE.v[i] * delta_pos[k_l].v[i])

/ impedance.mass.v[i] ;

delta_rate [k] .v [i]

= (delta_accel.v[i] * Ts) + delta_rate[k_1].v[i];

delta_pos [k] .v [i]

= (delta_rate[k] .vii] * Ts) + delta_pos[k_l] .viii;

break ;

case 1 :

delta_rate [k] .v[i]

= (sumTool_F_T.v[i]

- impedance .spring, v [i] * delta pos[k_l].v[i])

/ impedance.damping.vii] ;

delta_pos [k] .v [i]

= (delta_rate[k] .vEi] * Ts) + delta_pos[k_l].v[i]

break ;

case O:

delta_pos[k].v[i]

= (sumTool_F_T.v[i]) / impedance,spring.v[i] ;

break;

}/* end switch */

}/* end for */

/* copy deltas into local variable for manipulation */

delta vector : delta_posEk];

/* Shift k states into k-I states by s_apping k and k_l indecies */

78

temp = k_l;

k_l =k;

k = t emp;

end of mass-damper-spring equations ,/

/* extract linear delta into VECTOR3 type */

deltaLin.x = delta_vector.v[ix];

deltaLin.y = delta_vector.v[ly];

deltaLin.z = delta_vector.v[iz];

/* multiply linear deltas here using transVecPostMult

with oldRotationTrans */

if (transVectPostNult(_deltaLinRotated,

_oldRotationTrans.

kdeltaLin) == NULL)

logMsg("\O07\O07\O07 Error using transVectorPostMult ");

/* _ith error use linear deltas */

deltaLinRotated = deltaLin;

status = PAC_TRANS_ERROR;

/* copy rotated linear deltas back into delta vector

delta_vector.v[ix] = deltaLinRotated.x;

delta_vector.v[ly] = deltaLinRotated.y;

delta_vector.v[iz] = deltaLinKotated.z;

,/

/* convert six vector of XYZRPY into 4x4 transform */

if (spatToTransform(delta_trans.

_delta_vector.

FASTX) == NULL)

logMsg("Error using spatToTransform ");

/* with error use identity trans */

delta_trams = transIdentityMake(delta_trams, FASTX);

status = PAC_TRANS_EK_OK;

/* find next oldRotationTrans using transConvert */

oldRotationTrans = *delta_trams;

if (transConvert(_oldKota_ionTrans,

ROT) == NULL)

}

logMsg("Error using transConvert ");

/* with error use identity transform */

oldRotationTrans = idenZityTrans;

status = PAC_TRANS_ERROK;

'79

return(status);

}/i_ end of function: posAcomPathMod llllllllllllli_lllllllli_llllllll/

8O

I, %w%%G%,I

• i NOTICE OF COPYRIGHT

•* Copyright (C) Rensselaer Polytechnic Institute.

• i 1991 ALL RIGHTS RESERVED.

•* Permission to use, distribute, and copy is Er_unted ONLY for rese_Lrch

ii purposes, provided that this notice is displayed and the author is

•* acknowledged.

•* This software was developed at the facilities of the Center for

•* Intelligent Robotic Systems for Space Exploration, Troy, New York,

•* thanks %o generous project fttnding by NASA.

*/

/i

** File: compParams.h

** Written by: MJ Ryan

** Purpose: This file holds declarations used by compParams.c

i* Modification History:

** 0.1 11/11/91 MJ Ryan initial release

,/

#ifndef INCcompParamsh

#define INCcompParamsh

#include "pathModLib.h"

/i force/torque compliance parameters I/

typedef struct

{

IMPEDANCE_TYPE

impedance;

VECTORS

select vector,

desired_force,

force_dead_zone;

int

/* the desired impedance structure */

/. six vector selecting with axis to comply in */

/. six vector of desired forces */

/i dead zone of sunnmed forces */

force_threshold_enabled; /, boolean to turn force threshold on */

VECTORS

force_threshold_percent, /* +/- % of desired_force that actual_force */

/* must attain before insertion is deemed */

81

force_threshold_time;

} COMP_PARAHS_TYPE;

/* '*complete" */

/* time (secs) actual force must be in threshold */

#define COMP_FILE_VERSION (2)

#define COMP_FILE "/home/mryan/mcs/installed/pathModLib/compParams.dat"

typedef enum

{

BAD_CONP_PARANS_FILE

} COMP_STATUS_TYPE;

= 1

extern COMP_STATUS_TYPE

compParamsRead(const char *file,

COMP_PARAMS_TYPE *comp);

extern void

compParamsList(COMP_PARANS_TYPE *comp);

#endif INCcompParamsh

82

I* %w%%G%*I

** NOTICE OF COPYRIGHT

** Copyright (C) Rensselaer Polytechnic Institute.

** 1991 ALL RIGHTS RESERVED.

** Permission to use, distribute, and copy is granted ONLY for research

** purposes, provided that this notice is displayed and the author is

** ac]tnowledged.

** This software was developed at the facilities of the Center for

** Intelligent Robotic Systems for Space Exploration, Troy, New York,

** than.ks to generous project funding by NASA.

*/

** File: compParams.c

** Written by: MJ Ryan

** Purpose: This file holds functions for reading, listing, etc. the

compliance parameters used in the pathModLib functions

** Modification History:

** 0.I 11/11/91 MJ Kyan initial release

./

#include "msgLib.h"

#include "vxWorks.h"

#include "stdioLib.h"

#include "logLib.h"

#include "cirsse.h"

#include "mcsLib.h"

#include "transLib.h"

#include "compParams.h"

#define MAX_LINE_SIZE 80

** Purpose: This routine reads the position accommodation parameters

83

** from a file.

** Nod:

** 0.1 10/25/91MJ Ryan

** 0.2 10/25/91MJ Ryan

** 0.3 11/11/91MJ Ryan

Added sensor-gains to Comp struct.

Removed sensor-gains to Comp Struot.

Added additional parameters.

,/

COMP_STATUS_TYPE

compParamsRead(const char *file,

COMP_PARAMS_TYPE *comp)

{

FILE *dataYile;

char line[MAX_LINE_SIZE + I];

int

compParamsVersion = O;

/*ret: status */

/* in: comp-params file name */

/*out: oomp-params structure */

/* use default tape file if none specified */

if (file == NULL)

file = COMP_FILE;

printf("\n Reading file _s ...",file);

/* open file */

if ((dataFile = fopen(file, "r")) == NULL)

{

fclose(dataFile);

printf("\n Could not open file!\n");

return (BAD_COMP_PARAMSFILE);

} /* end of if */

/* skip comments */
do

{

fgets(line_ MAX_LINE_SIZE, dataFile);

}

while ((line[O] == '_') 11 (line[O] == '#'));

/* get compParams.dat version number */

sscanf(line,"_d",_compParamsVersion);

/* check version */

if (compParamsVersion != COMP_FILE_VERSION)
{

fclose(dataFile);

logMsg("\n\O07 \007 \007 Wrong compParams.dat version!!! ");

return (BAD_COMP_PARAMS_FILE);

} /* end of if */

84

/_ skip comments _/

do

{

fgets(line, MAX_LINE_SIZE, dataFile);

}
while ((line[O] == '%') El (line[O] == '#'));

/* get select vector */

sscanf(line,"_f _f _f _f _f _f",

_(comp->select_vector.v[O]), _(comp->select_vector.v[1]),

_(comp->select_vector.v[2]), _(comp->select_vector.v[3]),

_(comp->select_vector.v[4]), _(comp->select_vector.v[5]));

/* skip comments */

do

{

fgets(line, MAX_LINE_SIZE, dataFile);

}
while ((line[O] == '_') II (line[O] == '#'));

/_ get impedance mass/inertia vector a/

sscanf(line,"_f _f _f _f _f _f",

_(comp->impedance.mass.v[O]), &(comp->impedance.mass.v[1]),

R(comp->impedance.mass.v[2]), _(comp->impedance.mass.v[3]),

&(comp->impedance.mass.v[4]), _(comp->impedance.mass.v[5]));

/* skip comments */

do

{

fgets(line, MAX LINE_SIZE. dataFile);

}

hile ((line[O] == '') II (line[O] == '#'));

/* get impedance damping vector */

sscanf(line,'_.f 7,f 7,f 7,f 7,f 7,f",

_(comp->impedance.damping. v [0]), _(comp->impedance .damping. v[l]),

(comp->impedance. damping, v [2]), _(comp->impedance. damping, v [3]),

& (comp-> impedance, damping, v [4]), k (comp-> impedance, damp£ng, v [5])) ;

/* skip comments */

do

{

fgets(line, MAX_LINE_SIZE, dataFile);

}

while ((line[O] == 'Z') II (line[O] == '#'));

/* get impedance spring vector */

sscanf(line,"Zf Zf Zf Zf Zf Zf",

_(comp->impedance.spring.v[O]), _(comp->impedance.spring.v[1]),

&(comp->impedance.spring.v[2]), _(comp->impedance.spring.v[3]),

_(comp->impedance.spring.v[4]), _(comp->impedance.spring.v[5]));

$5

/* skip comments */

do

fgets(line, MAX_LINE_SIZE, dataFile);

}

while ((line[O] == '_) II (line[O] == '#'));

/* get desired force vector */

sscanf(line,"%f %f %f %f %f %f",

_(comp->desired_force.v[O]), _(comp->desired_force.vE1]),

l(comp->desired_force.v[2]), _(comp->desired_force.v[3]),

_(comp->desired_force.v[4]), k(comp->desired_force.v[5J));

mjr 11/11/91 ,/

/* skip comments */

do

fgets(line, MAX_LINE_SIZE, dataFile);

}
while ((line[O] == '_') If (line[O] == _#'));

/* get force_dead_zone vector */

sscanf(line,"_f _f _f _f _f _f",

k(comp->force_dead_zone.v[OJ), k(comp->force_dead_zone.v[lJ),

k(comp->lorce_dead_zone.v[2]), k(comp->force_dead_zone.v[3]),

k(comp->force_dead_zone.v[4]), k(comp->force_dead_zone.v[5]));

/* skip comments */

do

fgets(line, MAX_LINE_SIZE, dataFile);

}

hile ((line[O] == '') II (line[0] == '#'));

/* get force_threshold_enabled bool */

sscanf(line,"_d °', k(comp->force_threshold_enabled));

/* skip comments */

do

fgets(line, MAX_LINE_SIZE, dataFile);

}

while ((line[O] == '_J) If (line[O] == '#'));

/* get threshold_percent vector */

sscanf(line,"_f _f _f _f _f _f",

k(comp->force_threshold_percent.v[0]),

&(comp->force threshold percent.rill)
_ , -- s

86

_(¢omp->force_threshold_percent.v[2]),

&(comp->force_threshold_percent.v[3]),

_(comp->forcethreshold_percent.v[4]),

R(comp->force_threshold_percent.v[5]));

/* skip comments*/

do

{

fgets(line, MAX_LINE_SIZE, dataFile);

}
while ((line[O] == '_') II (line[O] == '#'));

/* get threshold_time vector */

sscanf(line,"_f _f _f _f _f _f",

R(comp->force_threshold_time.v[O]), &(comp->force_threshold_time.v[1]),

_(comp->force_threshold_time.v[2]), _(comp->force_threshold_time.v[3]),

R(comp->force_threshold_time.v[4]), R(comp->force_threshold_time.v[5]));

/* close file */

fclose(dataFile);

/* print out parameters */

compParamsList(comp);

logMsg("\n Done!\n");

return (OK);

} /* end of compParamsRead() */

** Routine: compParamsList()

** Parameters: none.

** Returns: none.

** Purpose: Displays all information stored in the tgen comp

*_ structure. This routine is used for debugEing purposes.

** MOD

** 11/11/91MJ Ryan Added additional params to print out

,/

void compParamsList(COMP_PARAMS_TYPE *comp)

{

char buff1[80];

/* display data */

logMsg("\n\n");

sprintf(buffl,"_.3f _.3f _.3f _.3f _.3f _.3f\n",

comp->select_vector.v[O], comp->select_vector.v[1],

$7

comp->sslect_vector.v[2], comp->select_vector.v[3],

comp->select_vec_or.v[4], ¢omp->select_vector.v[5]);

logMsg(" Select : 7.s",buffl);

sprintf (buff 1, "7,.3f Y,.3f Y,.3f

comp->impedance .mass. v [0] ,

comp->impedance .mass. v [2],

comp->impedanc e.mas s. v [4],

logMsg(" Mass : 7.s",buffl)

Y,.3f Y,.3f Y,.3f\n",

comp->impedance .mass. v[I] ,

comp->impedance, mass. v [3] ,

comp->impedance .mass. v [S]) ;

sprintf(buffl,"Y,.3f 7..3f 7..3f Y,.3f 7,.31 7..3f\n",

comp->impedance .damping. v [03 , comp->impedance, damping, v [1],

comp->impedance, damping, v [23 , comp->impedance, damping, v [3] ,

comp->impedancs .damping. v [4] , comp->impedance, damping, v [5]) ;

logMsg(" Damping : 7,s",buffl) ;

sprintf(buff1,"Y,.3f 7,.3f 7,.3f 7..3f 7..3f 7..3f\n",

comp->impedance, spring, v [0], comp->impedance, spring, v [1],

comp->impedance, spring, v [2] , comp->impedance, spring, v [3] ,

comp->impedance, spring, v [4], comp->impedancs, spring, v [5]) ;

logMsg(" Spring : 7.s",buffl) ;

sprintf(buffl,"7..3f 7..3f _.3f _.3f _.3f _.3f\n",

comp->desired_force.v[O], comp->desired_force.v[1],

comp->desired_force.v[2], comp->desired_force.v[3],

comp->desired_force.v[4], comp->desired_force.v[5]);

logMsg(" Des F/T : _s",buffl);

sprintf(buffl,"7..3f 7..3f 7..3f _.3f 7..3f _.3f\n",

¢omp->force_dead_zone.v[O], comp->force_dead_zone.v[1],

comp->force_dead_zone.v[2], comp->force_dead_zone.v[3],

comp->force_dead_zone.v[4], comp->force_dead_zone.v[5]);

logMsg("Dead-Zone : 7.s",buffl);

if (comp->force_threshold_enabled)

sprintf(buffl, "Force-Threshold-Enabled = TRUE\n");

else

sprintf(buffl, "Force-Threshold-Enabled = FALSE\n");

logMsg ("_s". buffl);

sprintf(buffl,"_.3f _.3f _.3f _.3f _.3f 7..3f\n",

comp->force_threshold_percent.v[O], comp->force_threshold_percent.v[1],

comp->force_threshold_percent.v[2], comp->forcs_threshold_percent.v[3],

comp->force_threshold_percent.v[4], comp->force_threshold_percent.v[5]);

logMsg("Threshld 7.7.: 7.s",buffl);

sprinCf(buffl,"_.3f 7..3f _.3f 7..3f 7..3f X.3fkn",

comp->force_threshold_time.v[O], comp->force_threshold_time.v[l],

comp->force_threshold_time.v[2], comp->force_threshold_time.v[3],

comp->force_threshold_time.v[4], comp->force_threshold time.v[5]);

logMsg("Threshld Time: 7.s",buffl);

88

logMsE("\n\n");

/* end of tgenCompList() */

/_**_**_*_ end of file ¢ompParams.c ************************************

